约瑟夫斯问题(有时也称为约瑟夫斯置换),是一个出现在计算机科学和数学中的问题。在计算机编程的算法中,类似问题又称为约瑟夫环。
有{\displaystyle n}个囚犯站成一个圆圈,准备处决。首先从一个人开始,越过{\displaystyle k-2}个人(因为第一个人已经被越过),并杀掉第k个人。接着,再越过{\displaystyle k-1}个人,并杀掉第k个人。这个过程沿着圆圈一直进行,直到最终只剩下一个人留下,这个人就可以继续活着。
问题是,给定了{\displaystyle n}和{\displaystyle k},一开始要站在什么地方才能避免被处决?
这个问题是以弗拉维奥·约瑟夫斯命名的,它是1世纪的一名犹太历史学家。他在自己的日记中写道,他和他的40个战友被罗马军队包围在洞中。他们讨论是自杀还是被俘,最终决定自杀,并以抽签的方式决定谁杀掉谁。约瑟夫斯和另外一个人是最后两个留下的人。约瑟夫斯说服了那个人,他们将向罗马军队投降,不再自杀。约瑟夫斯把他的存活归因于运气或天意,他不知道是哪一个。[1]
比较简单的做法是用循环单链表模拟整个过程,时间复杂度是O(n*m)。如果只是想求得最后剩下的人,则可以用数学推导的方式得出公式。且先看看模拟过程的解法。
# -*- coding: utf-8 -*-
class Node(object):
def __init__(self, value):
self.value = value
self.next = None
def create_linkList(n):
head = Node(1)
pre = head
for i in range(2, n+1):
newNode = Node(i)
pre.next= newNode
pre = newNode
pre.next = head
return head
n = 5 #总的个数
m = 2 #数的数目
if m == 1: #如果是1的话,特殊处理,直接输出
print n
else:
head = create_linkList(n)
pre = None
cur = head
while cur.next != cur: #终止条件是节点的下一个节点指向本身
for i in range(m-1):
pre = cur
cur = cur.next
print cur.value
pre.next = cur.next
cur.next = None
cur = pre.next
print cur.value
#include <iostream>
using namespace std;
typedef struct _LinkNode {
int value;
struct _LinkNode* next;
} LinkNode, *LinkNodePtr;
LinkNodePtr createCycle(int total) {
int index = 1;
LinkNodePtr head = NULL, curr = NULL, prev = NULL;
head = (LinkNodePtr) malloc(sizeof(LinkNode));
head->value = index;
prev = head;
while (--total > 0) {
curr = (LinkNodePtr) malloc(sizeof(LinkNode));
curr->value = ++index;
prev->next = curr;
prev = curr;
}
curr->next = head;
return head;
}
void run(int total, int tag) {
LinkNodePtr node = createCycle(total);
LinkNodePtr prev = NULL;
int start = 1;
int index = start;
while (node && node->next) {
if (index == tag) {
printf("\n%d", node->value);
if (tag == start) {
prev = node->next;
node->next = NULL;
node = prev;
} else {
prev->next = node->next;
node->next = NULL;
node = prev->next;
}
index = start;
} else {
prev = node;
node = node->next;
index++;
}
}
}
int