思路1:对于一棵二叉排序树
1.如果当前节点的值小于p,q的值,那么LCA一定在root的右边;
2.如果当前节点的值大于p,q的值,那么LCA一定在root的左边;
3.如果当前节点的值在p,q的值之间,那么当前节点为LCA;
/** * Definition for a binary tree node. * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: TreeNode* lowestCommonAncestor(TreeNode* root, TreeNode* p, TreeNode* q) { if(root->val<p->val&&root->val<q->val) return lowestCommonAncestor(root->right,p,q); else if(root->val>p->val&&root->val>q->val) return lowestCommonAncestor(root->left,p,q); else return root; } };
思路2:直接搜索两个数p,q的值,记录下搜索过程的路径,左侧为-1,右侧为1.比对路径即可,路径开始不同的点即为LCA(即交叉点)
思路3:对于一棵二叉排序树,如果p,q均在当前节点左字树或者右子树,则根节点与p,q的值的差值同号,乘积大于零。
然后继续判断在左边还是在右边
/** * Definition for a binary tree node. * struct TreeNode { * int val; * struct TreeNode *left; * struct TreeNode *right; * }; */ struct TreeNode* lowestCommonAncestor(struct TreeNode* root, struct TreeNode* p, struct TreeNode* q) { while((root->val-p->val)*(root->val-q->val)>0){ if(root->val-p->val>0) root=root->left; else root=root->right; } return root; }
原文:http://www.cnblogs.com/freinds/p/6308529.html