首页 > 编程语言 > 详细

python之pandas模块的基本使用(1)

时间:2017-01-20 23:40:25      阅读:537      评论:0      收藏:0      [点我收藏+]

一、pandas概述

pandas :pannel data analysis(面板数据分析)。pandas是基于numpy构建的,为时间序列分析提供了很好的支持。pandas中有两个主要的数据结构,一个是Series,另一个是DataFrame。

二、数据结构 Series

Series 类似于一维数组与字典(map)数据结构的结合。它由一组数据和一组与数据相对应的数据标签(索引index)组成。这组数据和索引标签的基础都是一个一维ndarray数组。可将index索引理解为行索引。 Series的表现形式为:索引标签在左边,值在右边

Series的使用代码示例:

import pandas as pd
from pandas import Series,DataFrame

print ‘用一维数组生成Series‘
x = Series([1,2,3,4]) 
print x
‘‘‘
0    1
1    2
2    3
3    4
‘‘‘
print x.values # [1 2 3 4]
# 默认标签为0到3的序号
print x.index # RangeIndex(start=0, stop=4, step=1) 

print ‘指定Series的index‘ # 可将index理解为行索引
x = Series([1, 2, 3, 4], index = [‘a‘, ‘b‘, ‘d‘, ‘c‘])
print x
‘‘‘
a    1
b    2
d    3
c    4
‘‘‘
print x.index # Index([u‘a‘, u‘b‘, u‘d‘, u‘c‘], dtype=‘object‘)
print x[‘a‘] # 通过行索引来取得元素值:1
x[‘d‘] = 6 # 通过行索引来赋值
print x[[‘c‘, ‘a‘, ‘d‘]] # 类似于numpy的花式索引
‘‘‘
c    4
a    1
d    6
‘‘‘
print x[x > 2]  # 类似于numpy的布尔索引
‘‘‘
d    6
c    4
‘‘‘
print ‘b‘ in x # 类似于字典的使用:是否存在该索引:True
print ‘e‘ in x # False


print ‘使用字典来生成Series‘
data = {‘a‘:1, ‘b‘:2, ‘d‘:3, ‘c‘:4}
x = Series(data)
print x
‘‘‘
a    1
b    2
c    4
d    3
‘‘‘
print ‘使用字典生成Series,并指定额外的index,不匹配的索引部分数据为NaN。‘
exindex = [‘a‘, ‘b‘, ‘c‘, ‘e‘]
y = Series(data, index = exindex) # 类似替换索引
print y
‘‘‘
a    1.0
b    2.0
c    4.0
e    NaN
‘‘‘
print ‘Series相加,相同行索引相加,不同行索引则数值为NaN‘
print x+y
‘‘‘
a    2.0
b    4.0
c    8.0
d    NaN
e    NaN
‘‘‘
print ‘指定Series/索引的名字‘
y.name = ‘weight of letters‘
y.index.name = ‘letter‘
print y
‘‘‘
letter
a    1.0
b    2.0
c    4.0
e    NaN
Name: weight of letters, dtype: float64
‘‘‘
print ‘替换index‘
y.index = [‘a‘, ‘b‘, ‘c‘, ‘f‘]
print y # 不匹配的索引部分数据为NaN
‘‘‘
a    1.0
b    2.0
c    4.0
f    NaN
Name: weight of letters, dtype: float64
‘‘‘

三、数据结构 DataFrame

DataFrame是一个表格型的数据结构,既有行索引也有列索引,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。DataFrame的每一行和每一列都是一个Series,这个Series的name属性为当前的行索引名/列索引名。

可以输入给DataFrame构造器的数据:

技术分享

DataFrame的使用代码示例:

print ‘使用字典生成DataFrame,key为列名字。‘
data = {‘state‘:[‘ok‘, ‘ok‘, ‘good‘, ‘bad‘],
        ‘year‘:[2000, 2001, 2002, 2003],
        ‘pop‘:[3.7, 3.6, 2.4, 0.9]}
print DataFrame(data) # 行索引index默认为0,1,2,3 
‘‘‘
   pop state  year
0  3.7    ok  2000
1  3.6    ok  2001
2  2.4  good  2002
3  0.9   bad  2003
‘‘‘
# 指定列索引columns,不匹配的列为NaN
print DataFrame(data, columns = [‘year‘, ‘state‘, ‘pop‘,‘debt‘]) 
‘‘‘
   year state  pop
0  2000    ok  3.7
1  2001    ok  3.6
2  2002  good  2.4
3  2003   bad  0.9
‘‘‘
print ‘指定行索引index‘
x = DataFrame(data,
                    columns = [‘year‘, ‘state‘, ‘pop‘, ‘debt‘],
                    index = [‘one‘, ‘two‘, ‘three‘, ‘four‘])
print x
‘‘‘
       year state  pop debt
one    2000    ok  3.7  NaN
two    2001    ok  3.6  NaN
three  2002  good  2.4  NaN
four   2003   bad  0.9  NaN
‘‘‘

import numpy
print ‘DataFrame元素的索引与修改‘
print x[‘state‘] # 返回一个名为state的Series
‘‘‘
one        ok
two        ok
three    good
four      bad
Name: state, dtype: object
‘‘‘
print x.state # 可直接用.进行列索引
print x.ix[‘three‘] # 用.ix[]来区分[]进行行索引
‘‘‘
year     2002
state    good
pop       2.4
debt      NaN
Name: three, dtype: object
‘‘‘
x[‘debt‘] = 16.5 # 修改一整列数据
print x
‘‘‘
       year state  pop  debt
one    2000    ok  3.7  16.5
two    2001    ok  3.6  16.5
three  2002  good  2.4  16.5
four   2003   bad  0.9  16.5
‘‘‘
x.debt = numpy.arange(4)  # 用numpy数组修改元素
print x
‘‘‘
       year state  pop  debt
one    2000    ok  3.7     0
two    2001    ok  3.6     1
three  2002  good  2.4     2
four   2003   bad  0.9     3
‘‘‘

print ‘用Series修改元素,没有指定的默认数据用NaN‘
val = Series([-1.2, -1.5, -1.7,0], index = [‘one‘, ‘two‘, ‘five‘,‘six‘]) 
x.debt = val # DataFrame的行索引不变
print x
‘‘‘
       year state  pop  debt
one    2000    ok  3.7  -1.2
two    2001    ok  3.6  -1.5
three  2002  good  2.4   NaN
four   2003   bad  0.9   NaN
‘‘‘

print ‘给DataFrame添加新列‘
x[‘gain‘] = (x.debt > 0)  # 如果debt大于0为True
print x
‘‘‘
       year state  pop  debt   gain
one    2000    ok  3.7  -1.2  False
two    2001    ok  3.6  -1.5  False
three  2002  good  2.4   NaN  False
four   2003   bad  0.9   NaN  False
‘‘‘
print x.columns
# Index([u‘year‘, u‘state‘, u‘pop‘, u‘debt‘, u‘gain‘], dtype=‘object‘)

print ‘DataFrame转置‘
print x.T
‘‘‘
         one    two  three   four
year    2000   2001   2002   2003
state     ok     ok   good    bad
pop      3.7    3.6    2.4    0.9
debt    -1.2   -1.5    NaN    NaN
gain   False  False  False  False
‘‘‘

print ‘使用切片初始化数据,未被匹配的数据为NaN‘
pdata = {‘state‘:x[‘state‘][0:3], ‘pop‘:x[‘pop‘][0:2]}
y = DataFrame(pdata)
print y
‘‘‘
       pop state
one    3.7    ok
three  NaN  good
two    3.6    ok
‘‘‘

print ‘指定索引和列的名称‘
# 与Series的index.name相区分
y.index.name = ‘序号‘
y.columns.name = ‘信息‘ 
print y
‘‘‘
信息 pop state
序号              
one    3.7    ok
three  NaN  good
two    3.6    ok
‘‘‘
print y.values
‘‘‘
[[3.7 ‘ok‘]
 [nan ‘good‘]
 [3.6 ‘ok‘]]
‘‘‘

四、索引对象

pandas的索引对象负责管理轴标签和轴名称等。构建Series或DataFrame时,所用到的任何数组或其他序列的标签都会被转换成一个Index对象。 Index对象是不可修改的。

代码示例:

from pandas import Index
print ‘获取Index对象‘
x = Series(range(3), index = [‘a‘, ‘b‘, ‘c‘])
index = x.index
print index 
# Index([u‘a‘, u‘b‘, u‘c‘], dtype=‘object‘)
print index[0:2]
# Index([u‘a‘, u‘b‘], dtype=‘object‘)
try:
    index[0]=‘d‘
except:
    print "Index is immutable"

print ‘构造/使用Index对象‘
index = Index(numpy.arange(3))
obj2 = Series([1.5, -2.5, 0], index = index)
print obj2
‘‘‘
0    1.5
1   -2.5
2    0.0
dtype: float64
‘‘‘
print obj2.index is index # True


print ‘判断列/行索引是否存在‘
data = {‘pop‘:{2.4, 2.9},
        ‘year‘:{2001, 2002} }
x = DataFrame(data)
print x
‘‘‘
          pop          year
0  {2.4, 2.9}  {2001, 2002}
1  {2.4, 2.9}  {2001, 2002}
‘‘‘
print ‘pop‘ in x.columns # True
print 1 in x.index # True

五、基本功能

  1. 对列/行索引重新指定索引(删除/增加:行/列):reindex函数

    reindex的method选项:

    技术分享

    代码示例:

    print ‘重新指定索引及NaN填充值‘
    x = Series([4, 7, 5], index = [‘a‘, ‘b‘, ‘c‘])
    y = x.reindex([‘a‘, ‘b‘, ‘c‘, ‘d‘])
    print y
    ‘‘‘
    a    4.0
    b    7.0
    c    5.0
    d    NaN
    dtype: float64
    ‘‘‘
    print x.reindex([‘a‘, ‘b‘, ‘c‘, ‘d‘], fill_value = 0) 
    # fill_value 指定不存在元素NaN的默认值
    ‘‘‘
    a    4
    b    7
    c    5
    d    0
    dtype: int64
    ‘‘‘
    
    print ‘重新指定索引并指定填充NaN的方法‘
    x = Series([‘blue‘, ‘purple‘], index = [0, 2]) 
    print x.reindex(range(4), method = ‘ffill‘)
    ‘‘‘
    0      blue
    1      blue
    2    purple
    3    purple
    dtype: object
    ‘‘‘
    
    print ‘对DataFrame重新指定行/列索引‘
    x = DataFrame(numpy.arange(9).reshape(3, 3),
                      index = [‘a‘, ‘c‘, ‘d‘],
                      columns = [‘A‘, ‘B‘, ‘C‘])
    print x
    ‘‘‘
       A  B  C
    a  0  1  2
    c  3  4  5
    d  6  7  8
    ‘‘‘
    x =  x.reindex([‘a‘, ‘b‘, ‘c‘, ‘d‘],method = ‘bfill‘)
    print x
    ‘‘‘
       A  B  C
    a  0  1  2
    b  3  4  5
    c  3  4  5
    d  6  7  8
    ‘‘‘
    print ‘重新指定column‘
    states = [‘A‘, ‘B‘, ‘C‘,‘D‘]
    x =  x.reindex(columns = states,fill_value = 0)
    print x
    ‘‘‘
       A  B  C  D
    a  0  1  2  0
    b  3  4  5  0
    d  6  7  8  0
    c  3  4  5  0
    ‘‘‘
    print x.ix[[‘a‘, ‘b‘, ‘d‘, ‘c‘], states]
    ‘‘‘
       A  B  C  D
    a  0  1  2  0
    b  3  4  5  0
    d  6  7  8  0
    c  3  4  5  0
    ‘‘‘
    
  2. 删除(丢弃)整一行/列的元素:drop函数

    print ‘Series根据行索引删除行‘
    x = Series(numpy.arange(4), index = [‘a‘, ‘b‘, ‘c‘,‘d‘])
    print x.drop(‘c‘)
    ‘‘‘
    a    0
    b    1
    d    3
    dtype: int32
    ‘‘‘
    print x.drop([‘a‘, ‘b‘])  #  花式删除
    ‘‘‘
    c    2
    d    3
    dtype: int32
    ‘‘‘
    
    print ‘DataFrame根据索引行/列删除行/列‘
    x = DataFrame(numpy.arange(16).reshape((4, 4)),
                      index = [‘a‘, ‘b‘, ‘c‘, ‘d‘],
                      columns = [‘A‘, ‘B‘, ‘C‘, ‘D‘])
    print x
    ‘‘‘
        A   B   C   D
    a   0   1   2   3
    b   4   5   6   7
    c   8   9  10  11
    d  12  13  14  15
    ‘‘‘
    print x.drop([‘A‘,‘B‘],axis=1) # 在列的维度上删除AB两行
    ‘‘‘
        C   D
    a   2   3
    b   6   7
    c  10  11
    d  14  15
    ‘‘‘
    print x.drop(‘a‘, axis = 0) # 在行的维度上删除行
    ‘‘‘
        A   B   C   D
    b   4   5   6   7
    c   8   9  10  11
    d  12  13  14  15
    ‘‘‘
    print x.drop([‘a‘, ‘b‘], axis = 0)
    ‘‘‘
      A   B   C   D
    c   8   9  10  11
    d  12  13  14  15
    ‘‘‘
    
  3. 索引、选取和过滤:

    DataFrame的索引选项:

    技术分享

    print ‘Series的数组索引/字典索引‘
    x = Series(numpy.arange(4), index = [‘a‘, ‘b‘, ‘c‘, ‘d‘])
    print x[‘b‘] # 1 像字典一样索引
    print x[1] # 1  像数组一样索引
    print x[[1, 3]] # 花式索引
    ‘‘‘
    b    1
    d    3
    dtype: int32
    ‘‘‘
    print x[x < 2] # 布尔索引
    ‘‘‘
    a    0
    b    1
    dtype: int32
    ‘‘‘
    print ‘Series的数组切片‘
    print x[‘a‘:‘c‘]  # 闭区间,索引顺序须为前后
    ‘‘‘
    a    0
    b    1
    c    2
    ‘‘‘
    x[‘a‘:‘c‘] = 5
    print x
    ‘‘‘
    a    5
    b    5
    c    5
    d    3
    ‘‘‘
    
    print ‘DataFrame的索引‘
    data = DataFrame(numpy.arange(16).reshape((4, 4)),
                      index = [‘a‘, ‘b‘, ‘c‘, ‘d‘],
                      columns = [‘A‘, ‘B‘, ‘C‘, ‘D‘])
    print data
    ‘‘‘
        A   B   C   D
    a   0   1   2   3
    b   4   5   6   7
    c   8   9  10  11
    d  12  13  14  15
    ‘‘‘
    print data[‘A‘] # 打印列
    ‘‘‘
    a     0
    b     4
    c     8
    d    12
    Name: A, dtype: int32
    ‘‘‘
    print data[[‘A‘, ‘B‘]] # 花式索引
    ‘‘‘
        A   B
    a   0   1
    b   4   5
    c   8   9
    d  12  13
    ‘‘‘
    print data[:2] # 切片索引,选择行
    ‘‘‘
       A  B  C  D
    a  0  1  2  3
    b  4  5  6  7
    ‘‘‘
    print data.ix[:2, [‘A‘, ‘B‘]] # 指定行和列索引
    ‘‘‘
       A  B
    a  0  1
    b  4  5
    ‘‘‘
    print data.ix[[‘a‘, ‘b‘], [3, 0, 1]] #行:字典索引,列:数组索引
    ‘‘‘
       D  A  B
    a  3  0  1
    b  7  4  5
    ‘‘‘
    print data.ix[2]  # 打印第2行(从0开始)
    ‘‘‘
    A     8
    B     9
    C    10
    D    11
    ‘‘‘
    print data.ix[:‘b‘, ‘A‘] # 行从开始到b,第A列。
    ‘‘‘
    a    0
    b    4
    Name: A, dtype: int32
    ‘‘‘
    print ‘根据条件选择‘
    print data
    ‘‘‘
        A   B   C   D
    a   0   1   2   3
    b   4   5   6   7
    c   8   9  10  11
    d  12  13  14  15
    ‘‘‘
    print data[data.A > 5] # 根据条件选择行
    ‘‘‘
        A   B   C   D
    c   8   9  10  11
    d  12  13  14  15
    ‘‘‘
    print data < 5  # 打印True或者False
    ‘‘‘
           A      B      C      D
    a   True   True   True   True
    b   True  False  False  False
    c  False  False  False  False
    d  False  False  False  False
    ‘‘‘
    data[data < 5] = 0 # 条件索引
    print data
    ‘‘‘
        A   B   C   D
    a   0   0   0   0
    b   0   5   6   7
    c   8   9  10  11
    d  12  13  14  15
    ‘‘‘
    
  4. 算术运算和数据对齐

    代码示例:

    print ‘DataFrame算术:不重叠部分为NaN,重叠部分元素运算‘
    x = DataFrame(numpy.arange(9.).reshape((3, 3)),
                    columns = [‘A‘,‘B‘,‘C‘],
                    index = [‘a‘, ‘b‘, ‘c‘])
    y = DataFrame(numpy.arange(12).reshape((4, 3)),
                    columns = [‘A‘,‘B‘,‘C‘],
                    index = [‘a‘, ‘b‘, ‘c‘, ‘d‘])
    print x
    print y
    print x + y
    ‘‘‘
          A     B     C
    a   0.0   2.0   4.0
    b   6.0   8.0  10.0
    c  12.0  14.0  16.0
    d   NaN   NaN   NaN
    ‘‘‘
    print ‘对x/y的不重叠部分填充,不是对结果NaN填充‘
    print x.add(y, fill_value = 0) # x不变化
    ‘‘‘
    
          A     B     C
    a   0.0   2.0   4.0
    b   6.0   8.0  10.0
    c  12.0  14.0  16.0
    d   9.0  10.0  11.0
    ‘‘‘
    
    print ‘DataFrame与Series运算:每行/列进行运算‘
    frame = DataFrame(numpy.arange(9).reshape((3, 3)),
                      columns = [‘A‘,‘B‘,‘C‘],
                      index = [‘a‘, ‘b‘, ‘c‘])
    series = frame.ix[0]
    print frame
    ‘‘‘
       A  B  C
    a  0  1  2
    b  3  4  5
    c  6  7  8
    ‘‘‘
    print series
    ‘‘‘
    A    0
    B    1
    C    2
    ‘‘‘
    print frame - series # 默认按行运算
    ‘‘‘
       A  B  C
    a  0  0  0
    b  3  3  3
    c  6  6  6
    ‘‘‘
    series2 = Series(range(4), index = [‘A‘,‘B‘,‘C‘,‘D‘])
    print frame + series2 # 按行运算:缺失列则为NaN
    ‘‘‘
       A  B   C   D
    a  0  2   4 NaN
    b  3  5   7 NaN
    c  6  8  10 NaN
    ‘‘‘
    series3 = frame.A
    print series3
    ‘‘‘
    a    0
    b    3
    c    6
    ‘‘‘
    print frame.sub(series3, axis = 0)  # 按列运算。
    ‘‘‘
       A  B  C
    a  0  1  2
    b  0  1  2
    c  0  1  2
    ‘‘‘
    
  5. numpy函数应用与映射

    代码示例:

    print ‘numpy函数在Series/DataFrame的应用‘
    frame = DataFrame(numpy.arange(9).reshape(3,3),
                      columns = [‘A‘,‘B‘,‘C‘],
                      index = [‘a‘, ‘b‘, ‘c‘])
    print frame
    ‘‘‘
       A  B  C
    a  0  1  2
    b  3  4  5
    c  6  7  8
    ‘‘‘
    print numpy.square(frame)
    ‘‘‘
        A   B   C
    a   0   1   4
    b   9  16  25
    c  36  49  64
    ‘‘‘
    
    series = frame.A
    print series
    ‘‘‘
    a    0
    b    3
    c    6
    ‘‘‘
    print numpy.square(series)
    ‘‘‘
    a     0
    b     9
    c    36
    ‘‘‘
    
    
    print ‘lambda(匿名函数)以及应用‘
    print frame
    ‘‘‘
    
       A  B  C
    a  0  1  2
    b  3  4  5
    c  6  7  8
    ‘‘‘
    print frame.max()
    ‘‘‘
    A    6
    B    7
    C    8
    ‘‘‘
    f = lambda x: x.max() - x.min()
    print frame.apply(f) # 作用到每一列
    ‘‘‘
    A    6
    B    6
    C    6
    ‘‘‘
    print frame.apply(f, axis = 1) # 作用到每一行
    ‘‘‘
    a    2
    b    2
    c    2
    ‘‘‘
    def f(x): # Series的元素的类型为Series
        return Series([x.min(), x.max()], index = [‘min‘, ‘max‘])
    print frame.apply(f)
    ‘‘‘
         A  B  C
    min  0  1  2
    max  6  7  8
    ‘‘‘
    
    print ‘applymap和map:作用到每一个元素‘
    _format = lambda x: ‘%.2f‘ % x
    print frame.applymap(_format) # 针对DataFrame
    ‘‘‘
          A     B     C
    a  0.00  1.00  2.00
    b  3.00  4.00  5.00
    c  6.00  7.00  8.00
    ‘‘‘
    print frame[‘A‘].map(_format) # 针对Series
    ‘‘‘
    a    0.00
    b    3.00
    c    6.00
    Name: A, dtype: object
    ‘‘‘
    

python之pandas模块的基本使用(1)

原文:http://blog.csdn.net/cxmscb/article/details/54632492

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!