pandas :pannel data analysis(面板数据分析)。pandas是基于numpy构建的,为时间序列分析提供了很好的支持。pandas中有两个主要的数据结构,一个是Series,另一个是DataFrame。
Series 类似于一维数组与字典(map)数据结构的结合。它由一组数据和一组与数据相对应的数据标签(索引index)组成。这组数据和索引标签的基础都是一个一维ndarray数组。可将index索引理解为行索引。 Series的表现形式为:索引标签在左边,值在右边
Series的使用代码示例:
import pandas as pd
from pandas import Series,DataFrame
print ‘用一维数组生成Series‘
x = Series([1,2,3,4])
print x
‘‘‘
0 1
1 2
2 3
3 4
‘‘‘
print x.values # [1 2 3 4]
# 默认标签为0到3的序号
print x.index # RangeIndex(start=0, stop=4, step=1)
print ‘指定Series的index‘ # 可将index理解为行索引
x = Series([1, 2, 3, 4], index = [‘a‘, ‘b‘, ‘d‘, ‘c‘])
print x
‘‘‘
a 1
b 2
d 3
c 4
‘‘‘
print x.index # Index([u‘a‘, u‘b‘, u‘d‘, u‘c‘], dtype=‘object‘)
print x[‘a‘] # 通过行索引来取得元素值:1
x[‘d‘] = 6 # 通过行索引来赋值
print x[[‘c‘, ‘a‘, ‘d‘]] # 类似于numpy的花式索引
‘‘‘
c 4
a 1
d 6
‘‘‘
print x[x > 2] # 类似于numpy的布尔索引
‘‘‘
d 6
c 4
‘‘‘
print ‘b‘ in x # 类似于字典的使用:是否存在该索引:True
print ‘e‘ in x # False
print ‘使用字典来生成Series‘
data = {‘a‘:1, ‘b‘:2, ‘d‘:3, ‘c‘:4}
x = Series(data)
print x
‘‘‘
a 1
b 2
c 4
d 3
‘‘‘
print ‘使用字典生成Series,并指定额外的index,不匹配的索引部分数据为NaN。‘
exindex = [‘a‘, ‘b‘, ‘c‘, ‘e‘]
y = Series(data, index = exindex) # 类似替换索引
print y
‘‘‘
a 1.0
b 2.0
c 4.0
e NaN
‘‘‘
print ‘Series相加,相同行索引相加,不同行索引则数值为NaN‘
print x+y
‘‘‘
a 2.0
b 4.0
c 8.0
d NaN
e NaN
‘‘‘
print ‘指定Series/索引的名字‘
y.name = ‘weight of letters‘
y.index.name = ‘letter‘
print y
‘‘‘
letter
a 1.0
b 2.0
c 4.0
e NaN
Name: weight of letters, dtype: float64
‘‘‘
print ‘替换index‘
y.index = [‘a‘, ‘b‘, ‘c‘, ‘f‘]
print y # 不匹配的索引部分数据为NaN
‘‘‘
a 1.0
b 2.0
c 4.0
f NaN
Name: weight of letters, dtype: float64
‘‘‘
DataFrame是一个表格型的数据结构,既有行索引也有列索引,它含有一组有序的列,每列可以是不同的值类型(数值、字符串、布尔值等)。DataFrame的每一行和每一列都是一个Series,这个Series的name属性为当前的行索引名/列索引名。
可以输入给DataFrame构造器的数据:
DataFrame的使用代码示例:
print ‘使用字典生成DataFrame,key为列名字。‘
data = {‘state‘:[‘ok‘, ‘ok‘, ‘good‘, ‘bad‘],
‘year‘:[2000, 2001, 2002, 2003],
‘pop‘:[3.7, 3.6, 2.4, 0.9]}
print DataFrame(data) # 行索引index默认为0,1,2,3
‘‘‘
pop state year
0 3.7 ok 2000
1 3.6 ok 2001
2 2.4 good 2002
3 0.9 bad 2003
‘‘‘
# 指定列索引columns,不匹配的列为NaN
print DataFrame(data, columns = [‘year‘, ‘state‘, ‘pop‘,‘debt‘])
‘‘‘
year state pop
0 2000 ok 3.7
1 2001 ok 3.6
2 2002 good 2.4
3 2003 bad 0.9
‘‘‘
print ‘指定行索引index‘
x = DataFrame(data,
columns = [‘year‘, ‘state‘, ‘pop‘, ‘debt‘],
index = [‘one‘, ‘two‘, ‘three‘, ‘four‘])
print x
‘‘‘
year state pop debt
one 2000 ok 3.7 NaN
two 2001 ok 3.6 NaN
three 2002 good 2.4 NaN
four 2003 bad 0.9 NaN
‘‘‘
import numpy
print ‘DataFrame元素的索引与修改‘
print x[‘state‘] # 返回一个名为state的Series
‘‘‘
one ok
two ok
three good
four bad
Name: state, dtype: object
‘‘‘
print x.state # 可直接用.进行列索引
print x.ix[‘three‘] # 用.ix[]来区分[]进行行索引
‘‘‘
year 2002
state good
pop 2.4
debt NaN
Name: three, dtype: object
‘‘‘
x[‘debt‘] = 16.5 # 修改一整列数据
print x
‘‘‘
year state pop debt
one 2000 ok 3.7 16.5
two 2001 ok 3.6 16.5
three 2002 good 2.4 16.5
four 2003 bad 0.9 16.5
‘‘‘
x.debt = numpy.arange(4) # 用numpy数组修改元素
print x
‘‘‘
year state pop debt
one 2000 ok 3.7 0
two 2001 ok 3.6 1
three 2002 good 2.4 2
four 2003 bad 0.9 3
‘‘‘
print ‘用Series修改元素,没有指定的默认数据用NaN‘
val = Series([-1.2, -1.5, -1.7,0], index = [‘one‘, ‘two‘, ‘five‘,‘six‘])
x.debt = val # DataFrame的行索引不变
print x
‘‘‘
year state pop debt
one 2000 ok 3.7 -1.2
two 2001 ok 3.6 -1.5
three 2002 good 2.4 NaN
four 2003 bad 0.9 NaN
‘‘‘
print ‘给DataFrame添加新列‘
x[‘gain‘] = (x.debt > 0) # 如果debt大于0为True
print x
‘‘‘
year state pop debt gain
one 2000 ok 3.7 -1.2 False
two 2001 ok 3.6 -1.5 False
three 2002 good 2.4 NaN False
four 2003 bad 0.9 NaN False
‘‘‘
print x.columns
# Index([u‘year‘, u‘state‘, u‘pop‘, u‘debt‘, u‘gain‘], dtype=‘object‘)
print ‘DataFrame转置‘
print x.T
‘‘‘
one two three four
year 2000 2001 2002 2003
state ok ok good bad
pop 3.7 3.6 2.4 0.9
debt -1.2 -1.5 NaN NaN
gain False False False False
‘‘‘
print ‘使用切片初始化数据,未被匹配的数据为NaN‘
pdata = {‘state‘:x[‘state‘][0:3], ‘pop‘:x[‘pop‘][0:2]}
y = DataFrame(pdata)
print y
‘‘‘
pop state
one 3.7 ok
three NaN good
two 3.6 ok
‘‘‘
print ‘指定索引和列的名称‘
# 与Series的index.name相区分
y.index.name = ‘序号‘
y.columns.name = ‘信息‘
print y
‘‘‘
信息 pop state
序号
one 3.7 ok
three NaN good
two 3.6 ok
‘‘‘
print y.values
‘‘‘
[[3.7 ‘ok‘]
[nan ‘good‘]
[3.6 ‘ok‘]]
‘‘‘
pandas的索引对象负责管理轴标签和轴名称等。构建Series或DataFrame时,所用到的任何数组或其他序列的标签都会被转换成一个Index对象。 Index对象是不可修改的。
代码示例:
from pandas import Index
print ‘获取Index对象‘
x = Series(range(3), index = [‘a‘, ‘b‘, ‘c‘])
index = x.index
print index
# Index([u‘a‘, u‘b‘, u‘c‘], dtype=‘object‘)
print index[0:2]
# Index([u‘a‘, u‘b‘], dtype=‘object‘)
try:
index[0]=‘d‘
except:
print "Index is immutable"
print ‘构造/使用Index对象‘
index = Index(numpy.arange(3))
obj2 = Series([1.5, -2.5, 0], index = index)
print obj2
‘‘‘
0 1.5
1 -2.5
2 0.0
dtype: float64
‘‘‘
print obj2.index is index # True
print ‘判断列/行索引是否存在‘
data = {‘pop‘:{2.4, 2.9},
‘year‘:{2001, 2002} }
x = DataFrame(data)
print x
‘‘‘
pop year
0 {2.4, 2.9} {2001, 2002}
1 {2.4, 2.9} {2001, 2002}
‘‘‘
print ‘pop‘ in x.columns # True
print 1 in x.index # True
对列/行索引重新指定索引(删除/增加:行/列):reindex函数
reindex的method选项:
代码示例:
print ‘重新指定索引及NaN填充值‘
x = Series([4, 7, 5], index = [‘a‘, ‘b‘, ‘c‘])
y = x.reindex([‘a‘, ‘b‘, ‘c‘, ‘d‘])
print y
‘‘‘
a 4.0
b 7.0
c 5.0
d NaN
dtype: float64
‘‘‘
print x.reindex([‘a‘, ‘b‘, ‘c‘, ‘d‘], fill_value = 0)
# fill_value 指定不存在元素NaN的默认值
‘‘‘
a 4
b 7
c 5
d 0
dtype: int64
‘‘‘
print ‘重新指定索引并指定填充NaN的方法‘
x = Series([‘blue‘, ‘purple‘], index = [0, 2])
print x.reindex(range(4), method = ‘ffill‘)
‘‘‘
0 blue
1 blue
2 purple
3 purple
dtype: object
‘‘‘
print ‘对DataFrame重新指定行/列索引‘
x = DataFrame(numpy.arange(9).reshape(3, 3),
index = [‘a‘, ‘c‘, ‘d‘],
columns = [‘A‘, ‘B‘, ‘C‘])
print x
‘‘‘
A B C
a 0 1 2
c 3 4 5
d 6 7 8
‘‘‘
x = x.reindex([‘a‘, ‘b‘, ‘c‘, ‘d‘],method = ‘bfill‘)
print x
‘‘‘
A B C
a 0 1 2
b 3 4 5
c 3 4 5
d 6 7 8
‘‘‘
print ‘重新指定column‘
states = [‘A‘, ‘B‘, ‘C‘,‘D‘]
x = x.reindex(columns = states,fill_value = 0)
print x
‘‘‘
A B C D
a 0 1 2 0
b 3 4 5 0
d 6 7 8 0
c 3 4 5 0
‘‘‘
print x.ix[[‘a‘, ‘b‘, ‘d‘, ‘c‘], states]
‘‘‘
A B C D
a 0 1 2 0
b 3 4 5 0
d 6 7 8 0
c 3 4 5 0
‘‘‘
删除(丢弃)整一行/列的元素:drop函数
print ‘Series根据行索引删除行‘
x = Series(numpy.arange(4), index = [‘a‘, ‘b‘, ‘c‘,‘d‘])
print x.drop(‘c‘)
‘‘‘
a 0
b 1
d 3
dtype: int32
‘‘‘
print x.drop([‘a‘, ‘b‘]) # 花式删除
‘‘‘
c 2
d 3
dtype: int32
‘‘‘
print ‘DataFrame根据索引行/列删除行/列‘
x = DataFrame(numpy.arange(16).reshape((4, 4)),
index = [‘a‘, ‘b‘, ‘c‘, ‘d‘],
columns = [‘A‘, ‘B‘, ‘C‘, ‘D‘])
print x
‘‘‘
A B C D
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
‘‘‘
print x.drop([‘A‘,‘B‘],axis=1) # 在列的维度上删除AB两行
‘‘‘
C D
a 2 3
b 6 7
c 10 11
d 14 15
‘‘‘
print x.drop(‘a‘, axis = 0) # 在行的维度上删除行
‘‘‘
A B C D
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
‘‘‘
print x.drop([‘a‘, ‘b‘], axis = 0)
‘‘‘
A B C D
c 8 9 10 11
d 12 13 14 15
‘‘‘
索引、选取和过滤:
DataFrame的索引选项:
print ‘Series的数组索引/字典索引‘
x = Series(numpy.arange(4), index = [‘a‘, ‘b‘, ‘c‘, ‘d‘])
print x[‘b‘] # 1 像字典一样索引
print x[1] # 1 像数组一样索引
print x[[1, 3]] # 花式索引
‘‘‘
b 1
d 3
dtype: int32
‘‘‘
print x[x < 2] # 布尔索引
‘‘‘
a 0
b 1
dtype: int32
‘‘‘
print ‘Series的数组切片‘
print x[‘a‘:‘c‘] # 闭区间,索引顺序须为前后
‘‘‘
a 0
b 1
c 2
‘‘‘
x[‘a‘:‘c‘] = 5
print x
‘‘‘
a 5
b 5
c 5
d 3
‘‘‘
print ‘DataFrame的索引‘
data = DataFrame(numpy.arange(16).reshape((4, 4)),
index = [‘a‘, ‘b‘, ‘c‘, ‘d‘],
columns = [‘A‘, ‘B‘, ‘C‘, ‘D‘])
print data
‘‘‘
A B C D
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
‘‘‘
print data[‘A‘] # 打印列
‘‘‘
a 0
b 4
c 8
d 12
Name: A, dtype: int32
‘‘‘
print data[[‘A‘, ‘B‘]] # 花式索引
‘‘‘
A B
a 0 1
b 4 5
c 8 9
d 12 13
‘‘‘
print data[:2] # 切片索引,选择行
‘‘‘
A B C D
a 0 1 2 3
b 4 5 6 7
‘‘‘
print data.ix[:2, [‘A‘, ‘B‘]] # 指定行和列索引
‘‘‘
A B
a 0 1
b 4 5
‘‘‘
print data.ix[[‘a‘, ‘b‘], [3, 0, 1]] #行:字典索引,列:数组索引
‘‘‘
D A B
a 3 0 1
b 7 4 5
‘‘‘
print data.ix[2] # 打印第2行(从0开始)
‘‘‘
A 8
B 9
C 10
D 11
‘‘‘
print data.ix[:‘b‘, ‘A‘] # 行从开始到b,第A列。
‘‘‘
a 0
b 4
Name: A, dtype: int32
‘‘‘
print ‘根据条件选择‘
print data
‘‘‘
A B C D
a 0 1 2 3
b 4 5 6 7
c 8 9 10 11
d 12 13 14 15
‘‘‘
print data[data.A > 5] # 根据条件选择行
‘‘‘
A B C D
c 8 9 10 11
d 12 13 14 15
‘‘‘
print data < 5 # 打印True或者False
‘‘‘
A B C D
a True True True True
b True False False False
c False False False False
d False False False False
‘‘‘
data[data < 5] = 0 # 条件索引
print data
‘‘‘
A B C D
a 0 0 0 0
b 0 5 6 7
c 8 9 10 11
d 12 13 14 15
‘‘‘
算术运算和数据对齐
代码示例:
print ‘DataFrame算术:不重叠部分为NaN,重叠部分元素运算‘
x = DataFrame(numpy.arange(9.).reshape((3, 3)),
columns = [‘A‘,‘B‘,‘C‘],
index = [‘a‘, ‘b‘, ‘c‘])
y = DataFrame(numpy.arange(12).reshape((4, 3)),
columns = [‘A‘,‘B‘,‘C‘],
index = [‘a‘, ‘b‘, ‘c‘, ‘d‘])
print x
print y
print x + y
‘‘‘
A B C
a 0.0 2.0 4.0
b 6.0 8.0 10.0
c 12.0 14.0 16.0
d NaN NaN NaN
‘‘‘
print ‘对x/y的不重叠部分填充,不是对结果NaN填充‘
print x.add(y, fill_value = 0) # x不变化
‘‘‘
A B C
a 0.0 2.0 4.0
b 6.0 8.0 10.0
c 12.0 14.0 16.0
d 9.0 10.0 11.0
‘‘‘
print ‘DataFrame与Series运算:每行/列进行运算‘
frame = DataFrame(numpy.arange(9).reshape((3, 3)),
columns = [‘A‘,‘B‘,‘C‘],
index = [‘a‘, ‘b‘, ‘c‘])
series = frame.ix[0]
print frame
‘‘‘
A B C
a 0 1 2
b 3 4 5
c 6 7 8
‘‘‘
print series
‘‘‘
A 0
B 1
C 2
‘‘‘
print frame - series # 默认按行运算
‘‘‘
A B C
a 0 0 0
b 3 3 3
c 6 6 6
‘‘‘
series2 = Series(range(4), index = [‘A‘,‘B‘,‘C‘,‘D‘])
print frame + series2 # 按行运算:缺失列则为NaN
‘‘‘
A B C D
a 0 2 4 NaN
b 3 5 7 NaN
c 6 8 10 NaN
‘‘‘
series3 = frame.A
print series3
‘‘‘
a 0
b 3
c 6
‘‘‘
print frame.sub(series3, axis = 0) # 按列运算。
‘‘‘
A B C
a 0 1 2
b 0 1 2
c 0 1 2
‘‘‘
numpy函数应用与映射
代码示例:
print ‘numpy函数在Series/DataFrame的应用‘
frame = DataFrame(numpy.arange(9).reshape(3,3),
columns = [‘A‘,‘B‘,‘C‘],
index = [‘a‘, ‘b‘, ‘c‘])
print frame
‘‘‘
A B C
a 0 1 2
b 3 4 5
c 6 7 8
‘‘‘
print numpy.square(frame)
‘‘‘
A B C
a 0 1 4
b 9 16 25
c 36 49 64
‘‘‘
series = frame.A
print series
‘‘‘
a 0
b 3
c 6
‘‘‘
print numpy.square(series)
‘‘‘
a 0
b 9
c 36
‘‘‘
print ‘lambda(匿名函数)以及应用‘
print frame
‘‘‘
A B C
a 0 1 2
b 3 4 5
c 6 7 8
‘‘‘
print frame.max()
‘‘‘
A 6
B 7
C 8
‘‘‘
f = lambda x: x.max() - x.min()
print frame.apply(f) # 作用到每一列
‘‘‘
A 6
B 6
C 6
‘‘‘
print frame.apply(f, axis = 1) # 作用到每一行
‘‘‘
a 2
b 2
c 2
‘‘‘
def f(x): # Series的元素的类型为Series
return Series([x.min(), x.max()], index = [‘min‘, ‘max‘])
print frame.apply(f)
‘‘‘
A B C
min 0 1 2
max 6 7 8
‘‘‘
print ‘applymap和map:作用到每一个元素‘
_format = lambda x: ‘%.2f‘ % x
print frame.applymap(_format) # 针对DataFrame
‘‘‘
A B C
a 0.00 1.00 2.00
b 3.00 4.00 5.00
c 6.00 7.00 8.00
‘‘‘
print frame[‘A‘].map(_format) # 针对Series
‘‘‘
a 0.00
b 3.00
c 6.00
Name: A, dtype: object
‘‘‘
原文:http://blog.csdn.net/cxmscb/article/details/54632492