首页 > 其他 > 详细

NLN中的MLP操作

时间:2017-01-22 20:30:10      阅读:378      评论:0      收藏:0      [点我收藏+]
MLP操作:

技术分享
#
前面是正常的卷积操作 # 这里是mlp conv, 可以看出就是一个1*1的卷积操作(等价于全连接操作) layers { bottom: "conv1" top: "cccp1" name: "cccp1" type: CONVOLUTION blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 convolution_param { num_output: 96 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" mean: 0 std: 0.05 } bias_filler { type: "constant" value: 0 } } } # 接着接一个激活函数 layers { bottom: "cccp1" top: "cccp1" name: "relu1" type: RELU } # 在来一个用1*1的卷积完成的全连接操作 layers { bottom: "cccp1" top: "cccp2" name: "cccp2" type: CONVOLUTION blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 convolution_param { num_output: 96 kernel_size: 1 stride: 1 weight_filler { type: "gaussian" mean: 0 std: 0.05 } bias_filler { type: "constant" value: 0 } } } # 接对应的激活函数 layers { bottom: "cccp2" top: "cccp2" name: "relu2" type: RELU } # 以上完成了两次非线性映射, 也就是 MLP 操作 layers { bottom: "cccp2" top: "pool0" name: "pool0" type: POOLING pooling_param { pool: MAX kernel_size: 3 stride: 2 } } layers { bottom: "pool0" top: "conv2" name: "conv2" type: CONVOLUTION blobs_lr: 1 blobs_lr: 2 weight_decay: 1 weight_decay: 0 convolution_param { num_output: 256 pad: 2 kernel_size: 5 stride: 1 weight_filler { type: "gaussian" mean: 0 std: 0.05 } bias_filler { type: "constant" value: 0 } } }

也是解决overfitting的一种方法

 

NLN中的MLP操作

原文:http://www.cnblogs.com/yunerlalala/p/6341247.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!