首页 > 其他 > 详细

机器学习书单(外文版)

时间:2017-01-31 00:26:34      阅读:245      评论:0      收藏:0      [点我收藏+]
 

技术分享

编者注:澳大利亚机器学习专家、畅销书作者  Jason Brownlee,对机器学习领域的各类优质书籍进行了盘点,汇总成这份阅读指南。在所筛选的学习资源中,这堪称是迄今为止最全面、最完整、权威性比较高的一份 ML 书单,涵盖了最值得学习者、从业者、开发者认真研读的精品书目。这份指南适合多样背景的读者:从想要了解机器学习的普通人,到入门新手,再到高阶开发者和学术研究人员。因此,雷锋网对其进行编译整理,特来与大家分享。

友情提醒:该指南只考虑了英文市场的机器学习图书,适合大家作为国际 ML 读物的参考。而例如周志华老师 《机器学习》等国内优秀著作并没有体现,请读者见谅。

Jason Brownlee:

我喜欢书,对于搞到的每一本机器学习书籍,我都要去读。

我认为,有好的参考资源,是对你心中机器学习谜题进行“解惑”的最快方式。阅读多本书,你就有了看待疑难问题的多种角度。

这份指南中,你会发现机器学习领域最值得一读的好书。

有许多原因促使人们想要机器学习书籍。因此,我采用了三种不同方式对机器学习书籍进行分类、排列,使读者们能按图索骥快速查找。比方说:

  • 依据类别(难易):教材,科普等。

  • 依据话题:Python,深度学习

  • 依据出版商:Packt,O’Reilly 等

所有书都包括了亚马逊或京东链接,你可以点击链接了解更多。

如何使用这份指南?

  1. 找到一个你最感兴趣的话题

  2. 浏览所选类别的书目

  3. 购书、借书、下载

  4. 从头读到尾

  5. 重复以上过程

把书摆在家里、办公室显眼的地方,跟你读过那本书是两码事。别瞎搞收藏。

1.0 依据难易水平

1.1 机器学习科普读物

这是面向普通大众的机器学习书目。它们让你体会到机器学习和数据科学的优点和益处,但免去了理论和应用细节。我还加入了一些个人非常喜欢的、偏“统计思维”的流行科普读物。

该类别的首选是: The Signal and the Noise

技术分享

与上述读物的乐观相比,提供了反面观点的是:Weapons of Math Destruction: How Big Data Increases Inequality and Threatens Democracy.

1.2 初学者书籍

真正面向零基础初学者的机器学习书籍,基本上是一片市场空白。下面的这些书,既包含了科普读物(见 1.1)中使用机器学习的益处,也部分包含了多见于入门书籍(见 1.3)的应用细节。

该类别的首选是:Data Mining: Practical Machine Learning Tools and Techniques (数据挖掘:实用机器学习工具与技术)

技术分享

1.3 机器学习入门书籍

下面是菜鸟入门的首选书单。相当于本科生级别的机器学习资源,适合基础学习者以及开发者新手。它们覆盖了广泛的机器学习话题,倾向于“怎么做”,而非“为什么”或是探讨理论

该类别的首选是:An Introduction to Statistical Learning: with Applications in R (统计学习导论:基于R应用)

技术分享

1.4 (国外)机器学习教科书

下面是世界一流机器学习教材的列表。这些是研究生课程中会使用到的教科书,覆盖了一系列方法和背后的理论。

该类别的首选是: The Elements of Statistical Learning: Data Mining, Inference, and Prediction (统计学习基础:数据挖掘、推理与预测)

技术分享

2.0 依据话题

2.1 与 R 语言相关

R 语言平台的应用机器学习书目。

该类别的首选是:Applied Predictive Modeling(应用预测建模)

技术分享

2.2 与 Python 相关

使用 Python 或 SciPy 语言平台的应用机器学习书目。

该类别的首选是: Python Machine Learning (Python 语言构建机器学习系统)

技术分享

2.3 深度学习

深度学习书目。现在没几本深度学习的好书,所以我只得用数量弥补质量。其中有许多专门针对 Tesnorflow 的教程。雷锋网注:该类推荐书目“全军覆没”——没有一本书有中文译本。这或许是因为深度学习领域理论框架尚不完善,缺乏影响力巨大的著作。

该类别毫无疑问的首选是:Deep Learning.

技术分享

另外,Michael Nielsen 的免费电子书 Neural Networks and Deep Learning 简单易懂,深受许多入门学习者的喜爱,雷锋网将其添加在这里,以作补充。

2.4 时间序列预测

时间序列预测领域最值得一读的书目。在该技术的应用方面,目前 R 语言是霸主。

该类别的入门首选是:Forecasting: principles and practice.

技术分享

该类别的首选教材是:Time Series Analysis: Forecasting and Control.

技术分享

3.0 依据出版商

有三个出版商在机器学习领域下了大力气,并且在认真出版图书。

它们是: O‘Reilly, Manning 和 Packt。它们的焦点是应用书籍。该榜单上的书籍质量参差不齐:从严谨设计、编排的图书到装订在一起的博文。

3.1 O‘Reilly 机器学习书籍

在它们的“数据”类别,O‘Reilly 有超过 100 本图书,许多与机器学习相关。以下是最畅销的几本:

这些书中,Programming Collective Intelligence: Building Smart Web 2.0 Applications (集体智慧编程) 或许是开创了 O‘Reilly 该目录的书,一直很受欢迎。

技术分享

3.2 Manning 机器学习书籍

Manning 的书偏实用,并且质量还行,虽然数量没 O’Reilly 和 Packt 那么多。

Manning 目录里较突出的一本是 Machine Learning in Action(机器学习实战),这也许同样是因为,它是该出版社在机器学习和数据科学领域的第一本出版物。

技术分享

3.3 Packt 机器学习书籍

感觉上 Packt 全面拥抱了数据科学和机器学习领域的图书出版。他们有一大堆针对晦涩难懂机器学习库的书。在流行话题上面,比如 R 和 Python,也有不少书籍出版。雷锋网注:可惜的是,Packt 似乎不重视汉语市场,旗下主要机器学习图书并没有中文译本。

以下是一些较流行的书目:

机器学习书单(外文版)

原文:http://www.cnblogs.com/sddai/p/6358536.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!