K-近邻算法是一种典型的无参监督学习算法,对于一个监督学习任务来说,其
在K-近邻算法中,无需利用训练样本学习出统一的模型,对于一个新的样本,如
在如上的描述中,样本
对于K-近邻算法的具体过程,可以参见博文简单易学的机器学习算法——K-近邻算法。
在K-近邻算法的计算过程中,通过暴力的对每一对样本计算其相似度是非常好费时间的,那么是否存在一种方法,能够加快计算的速度?kd树便是其中的一种方法。
kd树是一种对
在数据结构中,二叉排序树又称二叉查找树或者二叉搜索树。其定义为:二叉排序树,或者是一棵空树,或者是具有下列性质的二叉树:
一个典型的二叉排序树的例子如下图所示:
在二叉排序树中,若以中序遍历,则得到的是按照值大小排序的结果,即1->3->4->6->7->8->10->13->14。
如果需要检索7,则从根结点开始:
但是,对于二叉排序树的建立,若构建二叉排序树的顺序为基本有序时,如按照1->3->4->6->7->8->10->13->14构建二叉排序树,会得到如下的结果:
这样的话,检索效率会下降,为了避免这样的情况的出现,会对二叉树设置一些条件,如平衡二叉树。对于二叉排序树的更多内容,可以参见数据结构和算法——二叉排序树。
kd树与二叉排序树的基本思想类似,与二叉排序树不同的是,在kd树中,每一个节点表示的是一个样本,通过选择样本中的某一维特征,将样本划分到不同的节点中,如对于样本
在kd树的基本操作中,主要包括kd树的建立和kd树的检索两个部分。
构造kd树相当于不断地用垂直于坐标轴的超平面将
在李航的《统计机器学习》P41中有提到:平衡的kd树搜索时的效率未必是最优的。
在构建kd树的过程中,也可以根据插入数据的顺序构建kd树,以二维数据集为例,其数据的顺序依次为:
对于如上的二维数据集,构建kd树:
按照如上的过程,我们划分出来的kd树如下图所示:
此时,将样本按照特征空间划分如下图所示:
由以上的计算过程可以看出对于树中节点,需要有数据项,当前节点的比较维度,指向左子树的指针和指向右子树的指针,可以设置其结构如下:
#define MAX_LEN 1024
typedef struct KDtree{
double data[MAX_LEN]; // 数据
int dim; // 选择的维度
struct KDtree *left; // 左子树
struct KDtree *right; // 右子树
}kdtree_node;
构造kd树的函数声明为:
int kdtree_insert(kdtree_node *&tree_node, double *data, int layer, int dim);
函数的具体实现如下:
// 递归构建kd树,通过节点所在的层数控制选择的维度
int kdtree_insert(kdtree_node * &tree_node, double *data, int layer, int dim){
// 空树
if (NULL == tree_node){
// 申请空间
tree_node = (kdtree_node *)malloc(sizeof(kdtree_node));
if (NULL == tree_node) return 1;
//插入元素
for (int i = 0; i < dim; i ++){
(tree_node->data)[i] = data[i];
}
tree_node->dim = layer % (dim);
tree_node->left = NULL;
tree_node->right = NULL;
return 0;
}
// 插入左子树
if (data[tree_node->dim] <= (tree_node->data)[tree_node->dim]){
return kdtree_insert(tree_node->left, data, ++layer, dim);
}
// 插入右子树
return kdtree_insert(tree_node->right, data, ++layer, dim);
}
当构建好了kd树后,需要对kd树进行遍历,在这里,实现了两种kd树的遍历方法:
对于先序遍历,其函数的声明为:
void kdtree_print(kdtree_node *tree, int dim);
函数的具体实现为:
void kdtree_print(kdtree_node *tree, int dim){
if (tree != NULL){
fprintf(stderr, "dim:%d\n", tree->dim);
for (int i = 0; i < dim; i++){
fprintf(stderr, "%lf\t", (tree->data)[i]);
}
fprintf(stderr, "\n");
kdtree_print(tree->left, dim);
kdtree_print(tree->right, dim);
}
}
对于中序遍历,其函数的声明为:
void kdtree_print_in(kdtree_node *tree, int dim);
函数的具体实现为:
void kdtree_print_in(kdtree_node *tree, int dim){
if (tree != NULL){
kdtree_print_in(tree->left, dim);
fprintf(stderr, "dim:%d\n", tree->dim);
for (int i = 0; i < dim; i++){
fprintf(stderr, "%lf\t", (tree->data)[i]);
}
fprintf(stderr, "\n");
kdtree_print_in(tree->right, dim);
}
}
与二叉排序树一样,在kd树中,将样本划分到不同的空间中,在查找的过程中,由于查找在某些情况下仅需查找部分的空间,这为查找的过程节省了对大部分数据点的搜索的时间,对于kd树的检索,其具体过程为:
以查找
其对应的进栈序列为:
此时,以到
此时,需要检索以
注意:若需要进栈的子树中有很多节点,则根据需要比较的元素的大小,将直到叶节点的所有节点都进栈,这一点在很多地方都写得不清楚。
按照上述的步骤,再执行出栈的操作,直到栈为空。
检索过程的函数声明为:
void search_nearest(kdtree_node *tree, double *data_search, int dim, double *result);
函数的具体实现为:
void search_nearest(kdtree_node *tree, double *data_search, int dim, double *result){
// 一直找到叶子节点
fprintf(stderr, "\nstart searching....\n");
stack<kdtree_node *> st;
kdtree_node *p = tree;
while (p->left != NULL || p->right != NULL){
st.push(p);// 将p压栈
if (data_search[p->dim] <= (p->data)[p->dim]){// 选择左子树
// 判断左子树是否为空
if (p->left == NULL) break;
p = p->left;
}else{ // 选择右子树
if (p->right == NULL) break;
p = p->right;
}
}
// 现在与栈中的数据进行对比
double min_distance = distance(data_search, p->data, dim);// 与根结点之间的距离
fprintf(stderr, "init: %lf\n", min_distance);
copy2result(p->data, result, dim);
// 打印最优值
for (int i = 0; i < dim; i++){
fprintf(stderr, "%lf\t", result[i]);
}
fprintf(stderr, "\n");
double d = 0;
while (st.size() > 0){
kdtree_node *q = st.top();// 找到栈顶元素
st.pop(); // 出栈
// 判断与父节点之间的距离
d = distance(data_search, q->data, dim);
if (d <= min_distance){
min_distance = d;
copy2result(q->data, result, dim);
}
// 判断与分隔面是否相交
double d_line = distance_except_dim(data_search, q->data, q->dim); // 到平面之间的距离
if (d_line < min_distance){ // 相交
// 如果本来在右子树,现在查找左子树
// 如果本来在左子树,现在查找右子树
if (data_search[q->dim] > (q->data)[q->dim]){
// 选择左子树
if (q->left != NULL) q = q->left;
else q = NULL;
}else{
// 选择右子树
if (q->right != NULL) q = q->right;
else q = NULL;
}
if (q != NULL){
while (q->left != NULL || q->right != NULL){
st.push(q);
if (data_search[q->dim] <= (q->data)[q->dim]){
if (q->left == NULL) break;
q = q->left;
}else{
if (q->right == NULL) break;
q = q->right;
}
}
if (q->left == NULL && q->right == NULL) st.push(q);
}
}
}
}
在函数的实现中,需要用到的函数为:
double distance(double *a, double *b, int dim){
double d = 0.0;
for (int i = 0; i < dim; i ++){
d += (a[i] - b[i]) * (a[i] - b[i]);
}
return d;
}
double distance_except_dim(double *a, double *b, int except_dim){
double d = (a[except_dim] - b[except_dim]) * (a[except_dim] - b[except_dim]);
return d;
}
void copy2result(double *a, double *result, int dim){
for (int i = 0; i < dim; i ++){
result[i] = a[i];
}
}
利用如上的测试集,我们构建kd树,并在kd树中查找
#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include "kdtree.h"
// 解析特征
int parse_feature(char *p, double *fea, int *dim){
// 解析特征
char *q = p;
int i = 0;
while ((q = strchr(p, ‘\t‘)) != NULL){
*q = 0;
fea[i] = atof(p);
//fprintf(stderr, "atof(p):%lf\n", atof(p));
p = q + 1;
//r = r + 1;
i += 1;
}
// 解析最后一个
fea[i] = atof(p);
*dim = i + 1;
//fprintf(stderr, "atof(p):%lf\n", atof(p));
//fprintf(stderr, "fea:%lf\t%lf\n", fea[0], fea[1]);
}
int main(){
kdtree_node *tree_node = NULL;
// 从文件中读入数据
FILE *fp = fopen("data.txt", "r");
char feature[MAX_LEN];
double data[MAX_LEN];
int data_dim = 0; // 数据的维数
double data_search[2] = {6.0, 3.0};
while (fgets(feature, MAX_LEN, fp)){
fprintf(stderr, "%s", feature);
parse_feature(feature, data, &data_dim);
fprintf(stderr, "distance: %lf\n", distance(data, data_search, data_dim));
// 插入到kd树中
kdtree_insert(tree_node, data, 0, data_dim);
}
fclose(fp);
fprintf(stderr, "dim:%d\n", data_dim);
fprintf(stderr, "insert_ok\n");
// test
kdtree_print(tree_node, data_dim);
printf("\n");
kdtree_print_in(tree_node, data_dim);
double result[2];
search_nearest(tree_node, data_search, data_dim, result);
fprintf(stderr, "\n the final result: ");
for (int i = 0; i < data_dim; i++){
fprintf(stderr, "%lf\t", result[i]);
}
fprintf(stderr, "\n");
return 0;
}
以上的代码以上处至Github,其地址为:kd-tree。若有不对的地方,欢迎指正。
原文:http://blog.csdn.net/google19890102/article/details/54291615