2、小概率事件发生不正常。如果小概率事件还是发生了,那么就说明原假设有问题。
结合这两点,我们设置一个随机变量的区域,这个区域是偏离原假设的,并且发生在这个区域的概率很小,如果实际观察到的值还是出现在这个不太可能出现的范围内,那么我们可以拒绝原假设。
两种决定是否接受原假设的方法:
1、给定发生偏离原假设极端情况的概率(这就是显著性水平alpha),可以计算得到对应的临界值(参照图1,偏离原假设的阴影部分面积表示显著性水平,对应的坐标表示临界值)。若观察值在临界值范围内,表示出现这种现象都是比较正常的,则可接受原假设;若观察值超出临界值范围,则表示在原假设条件下出现了不太可能的现象,那么我们就怀疑原假设的成立性,则拒绝原假设。
2、给定发生偏离原假设极端情况的概率。计算出现观察值及比观察值还要偏离原假设的概率(这就是p值)。(参照下面这个图来理解)若p>alpha,则表示观察值在临界值范围内,则可接受原假设(如图1);若p<alpha,则表示观察值在临界值范围之外,则拒绝原假设(如图2)。p值是一个人工定义的东西,它其实还是通过判断观察值是否在临界值范围内来决定是否接受原假设。
总结下:
对于一个假设,我不知道它是否成立,而且实际测试过程中也存在许多非确定性因素可能导致我的测试过程不准确,那么我给出一个出现错误的容忍度(也就是显著性水平alpha),根据这个容忍度可以得到相应临界值(若观察值在这个范围内都是正常的,否则不正常),然后将观察值和这个值比较。
但是有些情况下观察值不太好看出来,我们可以计算出发生观察情况以及更坏情况的值(也就是p值)。若p值比alpha值大,则表明观察值在临界值范围内,可接受原假设(如图1);若p值比alpha值小,则表明观察值在临界值范围外,则决绝原假设(如图2)。
原文:http://www.cnblogs.com/zlfoak/p/6363638.html