本文版权归ljh2000和博客园共有,欢迎转载,但须保留此声明,并给出原文链接,谢谢合作。
本文作者:ljh2000
作者博客:http://www.cnblogs.com/ljh2000-jump/
转载请注明出处,侵权必究,保留最终解释权!
Description
You are given a tree (an acyclic undirected connected graph) with N nodes, and edges numbered 1, 2, 3...N-1.
We will ask you to perfrom some instructions of the following form:
The first line of input contains an integer t, the number of test cases (t <= 20). t test cases follow.
For each test case:
There is one blank line between successive tests.
For each "QUERY" operation, write one integer representing its result.
Input: 1 3 1 2 1 2 3 2 QUERY 1 2 CHANGE 1 3 QUERY 1 2 DONE Output: 1 3
正解:树链剖分
解题报告:
链剖裸题,注意清空数组。
//It is made by ljh2000 #include <iostream> #include <cstdlib> #include <cstring> #include <cstdio> #include <cmath> #include <algorithm> #include <ctime> #include <vector> #include <queue> #include <map> #include <set> #include <string> #include <complex> using namespace std; #define lc root<<1 #define rc root<<1|1 typedef long long LL; const int MAXN = 20011; const int MAXM = 40011; const int inf = (1<<30); int n,ecnt,first[MAXN],to[MAXM],next[MAXM],w[MAXM],father[MAXN],quan[MAXN],quanv[MAXN]; int deep[MAXN],id[MAXN],pre[MAXN],son[MAXN],size[MAXN],top[MAXN],match[MAXN],ans,ql,qr,CC; char ch[12]; struct node{ int maxl; }a[MAXN*3]; inline int getint(){ int w=0,q=0; char c=getchar(); while((c<‘0‘||c>‘9‘) && c!=‘-‘) c=getchar(); if(c==‘-‘) q=1,c=getchar(); while (c>=‘0‘&&c<=‘9‘) w=w*10+c-‘0‘,c=getchar(); return q?-w:w; } inline void dfs(int x,int fa){ size[x]=1; for(int i=first[x];i;i=next[i]) { int v=to[i]; if(v==fa) continue; father[v]=x; deep[v]=deep[x]+1; quanv[v]=(i+1)>>1; quan[v]=w[i]; match[(i+1)>>1]=v; dfs(v,x); size[x]+=size[v]; if(size[v]>=size[son[x]]) son[x]=v; } } inline void dfs2(int x,int fa){ id[x]=++ecnt; pre[ecnt]=x; if(son[x]) top[son[x]]=top[x],dfs2(son[x],x); for(int i=first[x];i;i=next[i]) { int v=to[i]; if(v==fa || v==son[x]) continue; top[v]=v; dfs2(v,x); } } inline void build(int root,int l,int r){ if(l==r) { a[root].maxl=quan[pre[l]]; return ; } int mid=(l+r)>>1; build(lc,l,mid); build(rc,mid+1,r); a[root].maxl=max(a[lc].maxl,a[rc].maxl); } inline void query(int root,int l,int r){ if(ql<=l && r<=qr) { ans=max(ans,a[root].maxl); return ; } int mid=(l+r)>>1; if(ql<=mid) query(lc,l,mid); if(qr>mid) query(rc,mid+1,r); } inline void lca(int x,int y){ ans=-inf; int f1=top[x],f2=top[y]; while(f1!=f2) { if(deep[f1]<deep[f2]) swap(f1,f2),swap(x,y); ql=id[f1]; qr=id[x]; query(1,1,n); x=father[f1]; f1=top[x]; } if(deep[x]<deep[y]) swap(x,y); ql=id[son[y]]; qr=id[x]; if(ql<=qr) query(1,1,n); printf("%d\n",ans); } inline void update(int root,int l,int r){ if(l==r) { a[root].maxl=CC; return ; } int mid=(l+r)>>1; if(ql<=mid) update(lc,l,mid); else update(rc,mid+1,r); a[root].maxl=max(a[lc].maxl,a[rc].maxl); } inline void work(){ int T=getint(); int x,y,z; while(T--) { n=getint(); ecnt=0; memset(first,0,sizeof(first)); memset(son,0,sizeof(son)); for(int i=1;i<n;i++) { x=getint(); y=getint(); z=getint(); next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y; w[ecnt]=z; next[++ecnt]=first[y]; first[y]=ecnt; to[ecnt]=x; w[ecnt]=z; } deep[1]=1; dfs(1,0); ecnt=0; top[1]=1; dfs2(1,0); build(1,1,n); while(1) { scanf("%s",ch); if(ch[0]==‘D‘) break; if(ch[0]==‘Q‘) { x=getint(); y=getint(); lca(x,y); } else { x=getint(); y=getint(); CC=y; z=match[x];//边对应的连接的儿子节点 quan[z]=y; ql=id[z]; update(1,1,n); } } } } int main() { work(); return 0; }
SPOJ375 QTREE - Query on a tree
原文:http://www.cnblogs.com/ljh2000-jump/p/6367163.html