$(12苏大四)$设$f\left( x \right) \in {C^1}\left( { - \infty , + \infty } \right)$,且
$(2)$对任意$x \in \left( { - \infty , + \infty } \right)$,有$\left| {f\left( x \right)} \right| < \frac{{\sqrt 2 }}{2}$
$(08华师七)$设$u\left( x \right)$在$\left[ {0, + \infty } \right)$上连续可微,且
$(1)$存在$\left[ {0, + \infty } \right)$上子列$\left\{ {{x_n}} \right\}$,使得${x_n} \to \infty $,且$u\left( {{x_n}} \right) \to 0\left( {n \to \infty } \right)$
$(2)$存在常数$C>0$,使得
原文:http://www.cnblogs.com/ly758241/p/3747275.html