/* 费式搜寻法 说明: 二分搜寻法每次搜寻时,都会将搜寻区间分为一半,所以其搜寻时间为O(log(2)n),log(2)表示以2为底的log值,这边要介绍的费 氏搜寻,其利用费氏数列作为间隔来搜寻下一个数,所以区间收敛的速度更快,搜寻时间为O(logn)。 */ #include <stdio.h> #include <stdlib.h> #include <time.h> #define MAX 15 #define SWAP(x,y) {int t; t = x; x = y; y = t;} void createfib(void); int findx(int, int); int fibsearch(int[], int); // 费氏搜寻 void quicksort(int[], int, int); // 快速排序 int Fib[MAX] = {-999}; int main(void) { int number[MAX] = {0}; int i, find; srand(time(NULL)); for(i = 1; i <= MAX; i++) { number[i] = rand() % 100; } quicksort(number, 1, MAX); printf("数列:"); for(i = 1; i <= MAX; i++) printf("%d ", number[i]); printf("\n输入寻找对象:"); scanf("%d", &find); if((i = fibsearch(number, find)) >= 0) printf("找到数字于索引 %d ", i); else printf("\n找不到指定数"); printf("\n"); return 0; } // 建立费氏数列 void createfib(void) { int i; Fib[0] = 0; Fib[1] = 1; for(i = 2; i < MAX; i++) Fib[i] = Fib[i-1] + Fib[i-2]; } // 找 x 值 int findx(int n, int find) { int i = 0; while(Fib[i] <= n) i++; i--; return i; } // 费式搜寻 int fibsearch(int number[], int find) { int i, x, m; createfib(); x = findx(MAX+1,find); m = MAX - Fib[x]; printf("\nx = %d, m = %d, Fib[x] = %d\n\n", x, m, Fib[x]); x--; i = x; if(number[i] < find) i += m; while(Fib[x] > 0) { if(number[i] < find) i += Fib[--x]; else if(number[i] > find) i -= Fib[--x]; else return i; } return -1; } void quicksort(int number[], int left, int right) { int i, j, k, s; if(left < right) { s = number[(left+right)/2]; i = left - 1; j = right + 1; while(1) { while(number[++i] < s) ; // 向右找 while(number[--j] > s) ; // 向左找 if(i >= j) break; SWAP(number[i], number[j]); } quicksort(number, left, i-1);// 对左边进行递回 quicksort(number, j+1, right); // 对右边进行递回 } }
运行结果:
原文:http://www.cnblogs.com/libra-yong/p/6392334.html