题意:给出所有计算机之间的路径和路径容量后,求出两个给定结点之间的流通总容量。(假设路径是双向的,且两方向流动的容量相同)
分析:裸最大流。标号从1开始,初始化的时候注意。
#pragma comment(linker, "/STACK:102400000, 102400000") #include<cstdio> #include<cstring> #include<cstdlib> #include<cctype> #include<cmath> #include<iostream> #include<sstream> #include<iterator> #include<algorithm> #include<string> #include<vector> #include<set> #include<map> #include<stack> #include<deque> #include<queue> #include<list> #define Min(a, b) ((a < b) ? a : b) #define Max(a, b) ((a < b) ? b : a) const double eps = 1e-8; inline int dcmp(double a, double b){ if(fabs(a - b) < eps) return 0; return a > b ? 1 : -1; } typedef long long LL; typedef unsigned long long ULL; const int INT_INF = 0x3f3f3f3f; const int INT_M_INF = 0x7f7f7f7f; const LL LL_INF = 0x3f3f3f3f3f3f3f3f; const LL LL_M_INF = 0x7f7f7f7f7f7f7f7f; const int dr[] = {0, 0, -1, 1, -1, -1, 1, 1}; const int dc[] = {-1, 1, 0, 0, -1, 1, -1, 1}; const int MOD = 1e9 + 7; const double pi = acos(-1.0); const int MAXN = 100 + 10; const int MAXT = 10000 + 10; using namespace std; struct Edge{ int from, to, cap, flow; Edge(int fr, int t, int c, int fl):from(fr), to(t), cap(c), flow(fl){} }; struct Dinic{ int n, m, s, t; vector<Edge> edges; vector<int> G[MAXN]; bool vis[MAXN]; int d[MAXN]; int cur[MAXN]; void init(int n){ edges.clear(); for(int i = 1; i <= n; ++i) G[i].clear();//标号从1开始 } void AddEdge(int from, int to, int cap){ edges.push_back(Edge(from, to, cap, 0)); edges.push_back(Edge(to, from, 0, 0)); m = edges.size(); G[from].push_back(m - 2); G[to].push_back(m - 1); } bool BFS(){ memset(vis, 0, sizeof vis); queue<int> Q; Q.push(s); d[s] = 0; vis[s] = 1; while(!Q.empty()){ int x = Q.front(); Q.pop(); for(int i = 0; i < G[x].size(); ++i){ Edge& e = edges[G[x][i]]; if(!vis[e.to] && e.cap > e.flow){ vis[e.to] = 1; d[e.to] = d[x] + 1; Q.push(e.to); } } } return vis[t]; } int DFS(int x, int a){ if(x == t || a == 0) return a; int flow = 0, f; for(int& i = cur[x]; i < G[x].size(); ++i){ Edge& e = edges[G[x][i]]; if(d[x] + 1 == d[e.to] && (f = DFS(e.to, Min(a, e.cap - e.flow))) > 0){ e.flow += f; edges[G[x][i] ^ 1].flow -= f; flow += f; a -= f; if(a == 0) break; } } return flow; } int Maxflow(int s, int t){ this -> s = s; this -> t = t; int flow = 0; while(BFS()){ memset(cur, 0, sizeof cur); flow += DFS(s, INT_INF); } return flow; } }di; int main(){ int n; int kase = 0; while(scanf("%d", &n) == 1){ if(!n) return 0; di.init(n); int s, t, c; scanf("%d%d%d", &s, &t, &c); for(int i = 0; i < c; ++i){ int x, y, v; scanf("%d%d%d", &x, &y, &v); di.AddEdge(x, y, v);//路径双向 di.AddEdge(y, x, v); } printf("Network %d\nThe bandwidth is %d.\n\n", ++kase, di.Maxflow(s, t)); } return 0; }
UVA - 820 Internet Bandwidth (因特网带宽)(最大流)
原文:http://www.cnblogs.com/tyty-Somnuspoppy/p/6393309.html