小D 被邀请到实验室,做一个跟图片质量评价相关的主观实验。实验用到的图片集一共有 N 张图片,编号为 1 到 N。实验分若干轮进行,在每轮实验中,小 D会被要求观看某两张随机选取的图片, 然后小D 需要根据他自己主观上的判断确定这两张图片谁好谁坏,或者这两张图片质量差不多。 用符号“<”、“>”和“=”表示图片 x和y(x、y为图片编号)之间的比较:如果上下文中x 和 y 是图片编号,则 x<y 表示图片 x“质量优于”y,x>y 表示图片 x“质量差于”y,x=y表示图片 x和 y“质量相同”;也就是说,这种上下文中,“<”、“>”、“=”分别是质量优于、质量差于、质量相同的意思;在其他上下文中,这三个符号分别是小于、大于、等于的含义。图片质量比较的推理规则(在 x和y是图片编号的上下文中):(1)x < y等价于 y > x。(2)若 x < y且y = z,则x < z。(3)若x < y且 x = z,则 z < y。(4)x=y等价于 y=x。(5)若x=y且 y=z,则x=z。 实验中,小 D 需要对一些图片对(x, y),给出 x < y 或 x = y 或 x > y 的主观判断。小D 在做完实验后, 忽然对这个基于局部比较的实验的一些全局性质产生了兴趣。在主观实验数据给定的情形下,定义这 N 张图片的一个合法质量序列为形如“x1 R1 x2 R2 x3 R3 …xN-1 RN-1 xN”的串,也可看作是集合{ xi Ri xi+1|1<=i<=N-1},其中 xi为图片编号,x1,x2,…,xN两两互不相同(即不存在重复编号),Ri为<或=,“合法”是指这个图片质量序列与任何一对主观实验给出的判断不冲突。 例如: 质量序列3 < 1 = 2 与主观判断“3 > 1,3 = 2”冲突(因为质量序列中 3<1 且1=2,从而3<2,这与主观判断中的 3=2 冲突;同时质量序列中的 3<1 与主观判断中的 3>1 冲突),但与主观判断“2 = 1,3 < 2” 不冲突;因此给定主观判断“3>1,3=2”时,1<3=2 和1<2=3 都是合法的质量序列,3<1=2 和1<2<3都是非法的质量序列。由于实验已经做完一段时间了,小D已经忘了一部分主观实验的数据。对每张图片 i,小 D 都最多只记住了某一张质量不比 i 差的另一张图片 Ki。这些小 D 仍然记得的质量判断一共有 M 条(0 <= M <= N),其中第i 条涉及的图片对为(KXi, Xi),判断要么是KXi < Xi ,要么是KXi = Xi,而且所有的Xi互不相同。小D 打算就以这M 条自己还记得的质量判断作为他的所有主观数据。现在,基于这些主观数据,我们希望你帮小D 求出这 N 张图片一共有多少个不同的合法质量序列。我们规定:如果质量序列中出现“x = y”,那么序列中交换 x和y的位置后仍是同一个序列。因此: 1<2=3=4<5 和1<4=2=3<5 是同一个序列, 1 < 2 = 3 和 1 < 3 = 2 是同一个序列,而1 < 2 < 3 与1 < 2 = 3是不同的序列,1<2<3和2<1<3 是不同的序列。由于合法的图片质量序列可能很多, 所以你需要输出答案对10^9 + 7 取模的结果
第一行两个正整数N,M,分别代表图片总数和小D仍然记得的判断的条数;
接下来M行,每行一条判断,每条判断形如”x < y”或者”x = y”。
输出仅一行,包含一个正整数,表示合法质量序列的数目对 10^9+7取模的结果。
//It is made by ljh2000
#include <iostream>
#include <cstdlib>
#include <cstring>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <ctime>
#include <vector>
#include <queue>
#include <map>
#include <set>
#include <string>
#include <complex>
using namespace std;
typedef long long LL;
const int MOD = 1000000007;
const int MAXN = 120;
int n,m,father[MAXN],cnt,first[MAXN],ecnt,to[MAXN],next[MAXN],in[MAXN],size[MAXN];
LL C[MAXN][MAXN],f[MAXN][MAXN],p[MAXN],ans;
char ch[12];
//只存在最多一个质量不比i差的数,这不就是一棵树吗QAQ
struct edge{ int x,y; }e[MAXN];
inline int find(int x){ if(father[x]!=x) father[x]=find(father[x]); return father[x]; }
inline void link(int x,int y){ next[++ecnt]=first[x]; first[x]=ecnt; to[ecnt]=y; }
inline int getint(){
int w=0,q=0; char c=getchar(); while((c<‘0‘||c>‘9‘) && c!=‘-‘) c=getchar();
if(c==‘-‘) q=1,c=getchar(); while (c>=‘0‘&&c<=‘9‘) w=w*10+c-‘0‘,c=getchar(); return q?-w:w;
}
inline void dfs(int x,int fa){
f[x][0]=1; int lim; LL now;
for(int i=first[x];i;i=next[i]) {
int v=to[i]; if(v==fa) continue;
dfs(v,x); size[x]+=size[v];
for(int j=0;j<=size[x];j++) {
for(int k=1;k<=size[v];k++) {
lim=min(n,j+k);
for(int l=max(j,k);l<=lim;l++) {
now=C[l][j]*C[j][k-(l-j)]; now%=MOD;
now*=f[x][j]; now%=MOD;
now*=f[v][k-1]; now%=MOD;
p[l]+=now; p[l]%=MOD;
}
}
}
for(int j=0;j<=size[x];j++) f[x][j]=p[j],p[j]=0;
}
size[x]++;
}
inline void work(){
n=getint(); m=getint(); int x,y;
for(int i=0;i<=n;i++) father[i]=i,C[i][0]=1;
for(int i=1;i<=n;i++)
for(int j=1;j<=i;j++)
C[i][j]=C[i-1][j-1]+C[i-1][j],C[i][j]%=MOD;
for(int i=1;i<=m;i++) {
x=getint(); scanf("%s",ch); y=getint();
if(ch[0]==‘=‘) father[find(y)]=find(x);
else e[++cnt].x=x,e[cnt].y=y;
}
for(int i=1;i<=cnt;i++)
link(find(e[i].x),find(e[i].y)),in[find(e[i].y)]++;
cnt=0;
for(int i=1;i<=n;i++)
if(find(i)==i) {
if(in[find(i)]==0) link(n+1,i);
cnt++;
}
dfs(n+1,0);
for(int i=1;i<=n;i++) ans+=f[n+1][i],ans%=MOD;
printf("%lld",ans);
}
int main()
{
work();
return 0;
}