首页 > 其他 > 详细

广度优先搜索

时间:2014-02-01 12:46:40      阅读:496      评论:0      收藏:0      [点我收藏+]

一、思想

广度优先搜索(Breadth First Search),又称宽度优先搜索,简称广搜,BFS。是对图的一种遍历方式。

以这个无向带权图为例,结点上的数字为该结点的编号,边上的数字为该边的权值。

假如以结点1为源点,以结点7为目标结点,广度优先搜索扫描到结点的顺序应当是这样的。(如图,结点旁的红色数字表示搜到结点的顺序,对于由同一个结点引出的多个节点,按照字典序分别扫描。)

第一次,结点1。第二次,结点2。第三次,结点5。第四次,结点4。

第五次,结点6。第六次,结点7。第七次,结点3。

bubuko.com,布布扣

可以发现,它是从源点开始,对每一个与源点连通的点一一扫描,扫描完成后,对于扫描到的点,再按照每个点被扫描到的顺序,执行同样的操作。那么就有一个问题,对于扫描到的点,如何记录其被扫描到的顺序?答案是使用一种数据结构——队列。

把扫描到的结点按照扫描的顺序入队,一个结点引出的所有结点入队完成后,把该结点(即队头)出队,那么出队后的队头就是比它后一个进队(即后一个被扫描到)的结点。

若共有n个结点,用a[i][j]表示图中结点i到结点j的权值(假设没有负权和为0的权),若结点i到结点j无边,那么令a[i][j]=0,用Q来表示该队列,h表示队头所表示的结点,pop表示队头出队,push(i)表示结点i进队,empty表示该队列是否为空,为空则返回0。那么从源点s到终点e,广度优先搜索的伪代码可以写成:

BFS1

Q.push(s);

while not Q.empty

       for j = 1 to n do

              if not a[i][j] = 0

                     Q.push(j);

       Q.pop;

这段代码会把整个图搜索一遍,但是我们要求搜索到终点,在实际的应用中,往往是要输出方案或者能否搜索到终点,所以这段代码是有问题的。

因此,我们在搜索到每个结点(在代码中即该结点入队)时,要判断该结点是否为目标结点,而为了达到这个目的,只要修改一下push就可以了

下面给出在结点入队时判断是否为目标结点的代码(搜到目标结点后输出’T’并结束程序):

push1(i)

       if i = e

              print(“T”);

              while not Q.empty

                     Q.pop;

       else

              push(i);

相应地,原来的代码中push(i);的部分也要改为push1(i);

对于与上面的图相类似的无环图,这样的方法可以适用,但是如果在上图的3,5结点间加一条边(如图),6,7结点间加一条边,那么这幅图成为有环的图。

用同样的方法,我们来模拟一下。

首先结点1进队,队列:1

然后结点2,5进队,1出队,队列:2 5

然后结点4进队,2出队,队列:5 4

然后结点1,3,6,7进队,5出队,队列:4 1 3 6 7(结点1又进队了?)

然后结点2,3进队,4出队,队列:1 3 6 7 2 3(结点23又进队了?队里有两个3?)

……

不难发现,按照同样的方法,对于有环的图来说,有环上的结点会重复进队,假如用一个数组来储存队列的话,相对于无环图,将会增加很大的空间开销。

bubuko.com,布布扣

 

所以,要防止结点重复进队,但是怎样防止呢?很明显,所有的结点可以分为两类:进过队的(注意:是进过,不是在队内,因为有结点出队)和没进过队的,那么使用布尔数组b来储存结点是否进过队,假如结点i进过队,就令b[i]=true,那么b[i]要全部初始化为false。

下面给出防止结点重复进队的代码和函数push3:

BFS1

b[1..n]=false;

Q.push(s);

while not Q.empty

       for j = 1 to n do

              if not a[Q.h][j] = 0

                     Q.push2(j);

       Q.pop;

push2(i)

       if b[i]=true

              return;

       b[i]=true;

       if i = e

              print(T);

              while not Q.empty

                     Q.pop;

       else

              push(i);

二、例题

题目描述

考虑将如此安排在一个 3 * 3 行列中的九个时钟:

 

bubuko.com,布布扣

目标要找一个最小的移动顺序将所有的指针指向12点。下面原表格列出了9种不同的旋转指针的方法,每一种方法都叫一次移动。选择1到9号移动方法,将会使在表格中对应的时钟的指针顺时针旋转90度。

移动方法  受影响的时钟

1              ABDE

2              ABC

3              BCEF

4              ADG

5              BDEFH

6              CFI

7              DEGH

8              GHI

9              EFHI

输入

9个数字,代表各个钟的初始状态

输出

把所有的钟指向12点的最短移动方案

输入样例

9 9 12

6 6 6

6 3 6

输入样例

4 5 8 9

对于这样一道题目,首先分析是否可以用广搜,广搜是一种图的遍历方式,那么就要知道图是怎么样的,源点是什么,以及目标结点是什么。显而易见地,源点应该是各个钟的最初状态,可以使用一个数组来储存。既然源点是一个状态,那么每个结点也是一个状态,即所有钟的指针指向。目标结点就是所有钟都指向12点的状态。

从任意一个结点出发,引出的结点(也就是经过1次移动后变成的状态)个数明显与移动方法的种数相同,即9种。

使用常数数组a[9][9]来储存移动的方法,a[i][j]表示第i种方法对第j个钟是否有影响。

那么根据题意,a可以初始化为{{1, 1, 0, 1, 1, 0, 0, 0, 0}, {1, 1, 1, 0, 0, 0, 0, 0, 0}, {0, 1, 1, 0, 1, 1, 0, 0, 0}, {1, 0, 0, 1, 0, 0, 1, 0, 0}, {0, 1, 0, 1, 1, 1, 0, 1, 0}, {0, 0, 1, 0, 0, 1, 0, 0, 1}, {0, 0, 0, 1, 1, 0, 1, 1, 0}, {0, 0, 0, 0, 0, 0, 1, 1, 1}, {0, 0, 0, 0, 1, 1, 0, 1, 1}}

使用b[4][4][4][4][4][4][4][4][4]来储存结点是否进过队,

b[i1][i2][i3][i4][i5][i6][i7][i8][i9]表示9个钟状态为i1,i2,i3,i4,i5,i6,i7,i8,i9的结点是否进过队。用结构体point来储存结点,每个结点包括以下几个信息:

f表示它的父结点,即它由哪个结点扩展而来。

x表示该结点的钟的状态。

c表示扩展至该结点的移动方法。

为什么要有f呢?在输出方案的时候需要从目标结点往回找,所以需要父结点。

为什么要有x呢?在扩展到这个结点的子节点时需要这个结点的状态。

为什么要有c呢?这还用问。。。要求输出的就是移动方法。

用结构体数组q来表示队列,h是队头指针,t是队尾指针,那么出队就是h++,入队就是t++并把入队结点的信息存在q[t]里面。

这个q数组要开多大呢?这取决于结点有几个,即状态有几种,9个钟每个有4个状态,那么就有4^9=262144种。所以q数组只要开得比这个大就可以了,比如300000。

在读入初始状态信息时,先把它入队,然后按照广搜的方法一一做。

在入队的push过程中,如果已经入过队,那么就直接跳出,如果没有,就把它入队,在判断一下该结点是否为目标结点,如果是,就从该结点开始,找到父结点,再找父结点的父结点,一直找到源点,每到一个点,就把它的移动方法(c)储存下来,结束后再倒序输出。

广度优先搜索

原文:http://www.cnblogs.com/zkx06111/p/3536830.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!