首页 > 其他 > 详细

[家里蹲大学数学杂志]第036期泛函分析期末试题

时间:2014-05-25 15:22:28      阅读:499      评论:0      收藏:0      [点我收藏+]

1 (15 分) 设 Hbubuko.com,布布扣 是 Hilbert 空间, lbubuko.com,布布扣 Hbubuko.com,布布扣 上的一实值线性有界泛函, Cbubuko.com,布布扣 Hbubuko.com,布布扣 中一闭凸子集,

f(v)=1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣||v||bubuko.com,布布扣2bubuko.com,布布扣?l(v)(? vC).bubuko.com,布布扣
求证:

(1) 对任意 Hbubuko.com,布布扣 上线性有界泛函 gbubuko.com,布布扣 , ? ububuko.com,布布扣0bubuko.com,布布扣Hbubuko.com,布布扣 , 使得 f(ububuko.com,布布扣0bubuko.com,布布扣)=g(ububuko.com,布布扣0bubuko.com,布布扣)bubuko.com,布布扣 ;

(2)? ububuko.com,布布扣1bubuko.com,布布扣Cbubuko.com,布布扣 , 使得

f(ububuko.com,布布扣2bubuko.com,布布扣)=infbubuko.com,布布扣vCbubuko.com,布布扣f(v);bubuko.com,布布扣

(3)讨论 g, ububuko.com,布布扣0bubuko.com,布布扣, ububuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣 之间的关系.

 

2(15 分) 设 Hbubuko.com,布布扣 是 Hilbert 空间, T:HHbubuko.com,布布扣 是线性算子且满足

(Tx,y)=(x,Ty)(? x,yH).bubuko.com,布布扣
求证:

(1)TL(H)bubuko.com,布布扣 ;

(2)Tbubuko.com,布布扣?bubuko.com,布布扣=Tbubuko.com,布布扣 , 此时称 Tbubuko.com,布布扣 为自共轭算子;

(3)若 R(A)bubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣=Hbubuko.com,布布扣 , 则对 ? yR(A)bubuko.com,布布扣 , 方程

Ax=ybubuko.com,布布扣
存在唯一解.

 

3(15 分) 证明:

(1)若 pqbubuko.com,布布扣 , 则 lbubuko.com,布布扣pbubuko.com,布布扣?lbubuko.com,布布扣qbubuko.com,布布扣bubuko.com,布布扣 ;

(2)lbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣 不可分;

(3)lbubuko.com,布布扣1bubuko.com,布布扣bubuko.com,布布扣 不自反.

 

4(10 分) 设 φC[0,1]bubuko.com,布布扣 , T: Lbubuko.com,布布扣2bubuko.com,布布扣[0,1]Lbubuko.com,布布扣2bubuko.com,布布扣[0,1]bubuko.com,布布扣 是由

(Tf)(x)=φ(x)bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣φ(t)f(t) dt(? fLbubuko.com,布布扣2bubuko.com,布布扣[0,1])bubuko.com,布布扣
给出的线性算子. 求证:

(1)Tbubuko.com,布布扣 是自共轭算子 (定义见题2);

(2)? λ0bubuko.com,布布扣 , 使得 Tbubuko.com,布布扣2bubuko.com,布布扣=λTbubuko.com,布布扣 , 由此求出 Tbubuko.com,布布扣 的谱半径 rbubuko.com,布布扣σbubuko.com,布布扣(T)bubuko.com,布布扣 .

 

 

5(10 分) 设 Xbubuko.com,布布扣 是自反的 Banach 空间, A?Xbubuko.com,布布扣 . 证明:

(1)Abubuko.com,布布扣 弱列紧的充分必要条件是 Abubuko.com,布布扣 有界;

(2) 若 Abubuko.com,布布扣 弱列紧的, 则 Abubuko.com,布布扣 的凸包

co(A)={bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣λbubuko.com,布布扣ibubuko.com,布布扣xbubuko.com,布布扣ibubuko.com,布布扣; bubuko.com,布布扣i=1bubuko.com,布布扣nbubuko.com,布布扣λbubuko.com,布布扣ibubuko.com,布布扣=1, λbubuko.com,布布扣ibubuko.com,布布扣0, xbubuko.com,布布扣ibubuko.com,布布扣A, i=1,2,?,n, nN}bubuko.com,布布扣
也是弱列紧的.

 

6(10 分) 证明:

(1)在 Hilbert 空间 Hbubuko.com,布布扣 中, xbubuko.com,布布扣nbubuko.com,布布扣xbubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣 的充分必要条件是

||xbubuko.com,布布扣nbubuko.com,布布扣||||xbubuko.com,布布扣0bubuko.com,布布扣||,xbubuko.com,布布扣nbubuko.com,布布扣?xbubuko.com,布布扣0bubuko.com,布布扣;bubuko.com,布布扣

(2)在 Lbubuko.com,布布扣2bubuko.com,布布扣[0,1]bubuko.com,布布扣 中, fbubuko.com,布布扣nbubuko.com,布布扣fbubuko.com,布布扣 的充分必要条件是

fbubuko.com,布布扣nbubuko.com,布布扣?f,fbubuko.com,布布扣2bubuko.com,布布扣nbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣fbubuko.com,布布扣2bubuko.com,布布扣.bubuko.com,布布扣

 

7(8 分) 设 Hbubuko.com,布布扣 是 Hilbert 空间, Hbubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣 Hbubuko.com,布布扣 的闭线性子空间, fbubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣 Hbubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣 上的线性有界泛函. 证明: ? Hbubuko.com,布布扣 上的线性有界泛函 fbubuko.com,布布扣 , 使得

f(x)=fbubuko.com,布布扣0bubuko.com,布布扣(x)(? xHbubuko.com,布布扣0bubuko.com,布布扣),bubuko.com,布布扣
||f||=||fbubuko.com,布布扣0bubuko.com,布布扣||.bubuko.com,布布扣

 

 

8(8 分) 设 X, Ybubuko.com,布布扣 是 Banach 空间, Tbubuko.com,布布扣 Xbubuko.com,布布扣 Ybubuko.com,布布扣 的线性算子, 又设对 ? gYbubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣 , g(Tx)bubuko.com,布布扣 Xbubuko.com,布布扣 上的线性有界泛函, 求证: Tbubuko.com,布布扣 是连续的.

 

9(9 分) 设 C[a,b]bubuko.com,布布扣 是连续函数空间, 赋以最大值范数

||x||bubuko.com,布布扣bubuko.com,布布扣=supbubuko.com,布布扣t[a,b]bubuko.com,布布扣|x(t)|(? xC[a,b]).bubuko.com,布布扣
{xbubuko.com,布布扣nbubuko.com,布布扣}?C[a,b]bubuko.com,布布扣 xC[a,b]bubuko.com,布布扣 . 求证: xbubuko.com,布布扣nbubuko.com,布布扣?xbubuko.com,布布扣 的充分必要条件是
limbubuko.com,布布扣nbubuko.com,布布扣xbubuko.com,布布扣nbubuko.com,布布扣(t)=x(t),? t[a,b]Q,bubuko.com,布布扣
supbubuko.com,布布扣n1bubuko.com,布布扣||xbubuko.com,布布扣nbubuko.com,布布扣||bubuko.com,布布扣bubuko.com,布布扣<.bubuko.com,布布扣

 

应老师要求, 出了一份泛函分析期末试卷, 主要针对张恭庆泛函分析第二章. 自己写完后也感觉太难了. 不过还是保留了做个纪念. 下次修改后再发终结版.

[家里蹲大学数学杂志]第036期泛函分析期末试题,布布扣,bubuko.com

[家里蹲大学数学杂志]第036期泛函分析期末试题

原文:http://www.cnblogs.com/zhangzujin/p/3750813.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!