首页 > 其他 > 详细

[问题2014S12] 解答

时间:2014-05-25 20:13:20      阅读:403      评论:0      收藏:0      [点我收藏+]

[问题2014S12]  解答

先证明一个简单的引理.

引理  设 Bbubuko.com,布布扣 nbubuko.com,布布扣 阶半正定 Hermite 阵, αbubuko.com,布布扣 nbubuko.com,布布扣 维复列向量, 若 αbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣Bα=0bubuko.com,布布扣 , 则 Bα=0bubuko.com,布布扣 .

引理的证明  由假设存在 nbubuko.com,布布扣 阶复方阵 Cbubuko.com,布布扣 , 使得 B=Cbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣Cbubuko.com,布布扣 , 从而

0=αbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣Bα=αbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣Cbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣Cα=(Cα)bubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣(Cα).bubuko.com,布布扣
因此 Cα=0bubuko.com,布布扣 , 从而 Bα=Cbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣Cα=0bubuko.com,布布扣 bubuko.com,布布扣

回到原题的证明.

任取 ABbubuko.com,布布扣 的特征值 λbubuko.com,布布扣0bubuko.com,布布扣Cbubuko.com,布布扣 以及对应的特征向量 0αCbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣 , 即

ABα=λbubuko.com,布布扣0bubuko.com,布布扣α.bubuko.com,布布扣
上式两边同时左乘 Bαbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣bubuko.com,布布扣 , 则有
(Bα)bubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣A(Bα)=λbubuko.com,布布扣0bubuko.com,布布扣αbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣Bα.bubuko.com,布布扣
αbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣Bα=0bubuko.com,布布扣 , 则由引理知 Bα=0bubuko.com,布布扣 , 于是 λbubuko.com,布布扣0bubuko.com,布布扣α=ABα=0bubuko.com,布布扣 , 从而 λbubuko.com,布布扣0bubuko.com,布布扣=0bubuko.com,布布扣 , 结论成立. 若 αbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣Bα0bubuko.com,布布扣 , 则由 Bbubuko.com,布布扣 的半正定性知 αbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣Bα>0bubuko.com,布布扣 , 又由 Abubuko.com,布布扣 的半正定性知 (Bα)bubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣A(Bα)0bubuko.com,布布扣 , 从而
λbubuko.com,布布扣0bubuko.com,布布扣=(Bα)bubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣A(Bα)bubuko.com,布布扣αbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣Tbubuko.com,布布扣Bαbubuko.com,布布扣bubuko.com,布布扣0,bubuko.com,布布扣
即结论也成立. 进一步, 若 A,Bbubuko.com,布布扣 都是正定阵, 由上面第二种情况的讨论马上知道 λbubuko.com,布布扣0bubuko.com,布布扣>0bubuko.com,布布扣 bubuko.com,布布扣

[问题2014S12] 解答,布布扣,bubuko.com

[问题2014S12] 解答

原文:http://www.cnblogs.com/torsor/p/3751357.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!