首页 > 其他 > 详细

基于局部阈值化的图像二值化

时间:2017-03-01 20:38:20      阅读:332      评论:0      收藏:0      [点我收藏+]

 较为常用的图像二值化方法有:1)全局固定阈值;2)局部自适应阈值;3)OTSU等。

全局固定阈值很容易理解,就是对整幅图像都是用一个统一的阈值来进行二值化;

  1. / 全局二值化  
  2.     int th = 100;   
  3.     cv::Mat global;  
  4.     cv::threshold(image, global, th, 255, CV_THRESH_BINARY_INV);  

 局部自适应阈值则是根据像素的邻域块的像素值分布来确定该像素位置上的二值化阈值。这样做的好处在于每个像素位置处的二值化阈值不是固定不变的,而是由其周围邻域像素的分布来决定的。亮度较高的图像区域的二值化阈值通常会较高,而亮度较低的图像区域的二值化阈值则会相适应地变小。不同亮度、对比度、纹理的局部图像区域将会拥有相对应的局部二值化阈值。常用的局部自适应阈值有:1)局部邻域块的均值;2)局部邻域块的高斯加权和。

  1.  // 局部二值化  
  2.   
  3.     int blockSize = 25;  
  4.     int constValue = 10;  
  5.     cv::Mat local;  
  6.     cv::adaptiveThreshold(image, local, 255, CV_ADAPTIVE_THRESH_MEAN_C, CV_THRESH_BINARY_INV, blockSize, constValue);  

基于局部阈值化的图像二值化

原文:http://www.cnblogs.com/Peit/p/6485907.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!