首页 > 其他 > 详细

[家里蹲大学数学杂志]第037期泛函分析期末试题

时间:2014-05-26 18:40:06      阅读:415      评论:0      收藏:0      [点我收藏+]

1 (10 分) 设 Xbubuko.com,布布扣 是 Banach 空间, fbubuko.com,布布扣 Xbubuko.com,布布扣 上的线性泛函. 求证: fL(X)bubuko.com,布布扣 的充分必要条件是

N(f)={xX; f(x)=0}bubuko.com,布布扣
Xbubuko.com,布布扣 的闭线性子空间.

证明:  参见书 P 82 T 2.1.7(3).

 

2 (10 分) 设 Hbubuko.com,布布扣 是 Hilbert 空间, lbubuko.com,布布扣 Hbubuko.com,布布扣 上的一实值线性有界泛函, Cbubuko.com,布布扣 Hbubuko.com,布布扣 中一闭凸子集,

f(v)=1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣||v||bubuko.com,布布扣2bubuko.com,布布扣?l(v)(? vC).bubuko.com,布布扣
求证:  

(1)? ububuko.com,布布扣?bubuko.com,布布扣Hbubuko.com,布布扣 , 使得

f(v)=1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣||v?ububuko.com,布布扣?bubuko.com,布布扣||bubuko.com,布布扣2bubuko.com,布布扣?1bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣||ububuko.com,布布扣?bubuko.com,布布扣||bubuko.com,布布扣2bubuko.com,布布扣(? vC);bubuko.com,布布扣

(2) ? | ububuko.com,布布扣0bubuko.com,布布扣Cbubuko.com,布布扣 , 使得

f(ububuko.com,布布扣0bubuko.com,布布扣)=infbubuko.com,布布扣vCbubuko.com,布布扣f(v).bubuko.com,布布扣

证明:  参见书 P 87 T 2.2.2.

 

3 (15 分) 设 Hbubuko.com,布布扣 是 Hilbert 空间, AL(H)bubuko.com,布布扣 , 并且 ? m>0bubuko.com,布布扣 , 使得

|(Ax,x)|m||x||bubuko.com,布布扣2bubuko.com,布布扣(? xH).bubuko.com,布布扣
求证: Abubuko.com,布布扣?1bubuko.com,布布扣bubuko.com,布布扣 存在且 Abubuko.com,布布扣?1bubuko.com,布布扣L(H)bubuko.com,布布扣 .

证明:  参见书 P 103 T 2.3.3.

 

4 (10 分) 设 Xbubuko.com,布布扣 是赋范线性空间, {xbubuko.com,布布扣1bubuko.com,布布扣,?,xbubuko.com,布布扣nbubuko.com,布布扣}bubuko.com,布布扣 nbubuko.com,布布扣 个线性无关元. 求证: ? {fbubuko.com,布布扣1bubuko.com,布布扣,?,fbubuko.com,布布扣nbubuko.com,布布扣}bubuko.com,布布扣 使得

<fbubuko.com,布布扣ibubuko.com,布布扣,xbubuko.com,布布扣jbubuko.com,布布扣>=δbubuko.com,布布扣ijbubuko.com,布布扣(? i,j=1,?,n).bubuko.com,布布扣

证明:  参见书 P 124 T 2.4.7.

 

5 (10 分) 设 Xbubuko.com,布布扣 是复赋范线性空间, E?Xbubuko.com,布布扣 是非空的均衡闭凸集. 求证: ? fXbubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣 , 使得

supbubuko.com,布布扣xEbubuko.com,布布扣|f(x)|<|f(xbubuko.com,布布扣0bubuko.com,布布扣)|.bubuko.com,布布扣

证明:  参见书 P 124 T 2.4.10.

 

6 (10 分) 设 Hbubuko.com,布布扣 是 Hilbert 空间, TL(H)bubuko.com,布布扣 满足 ||T||1bubuko.com,布布扣 . 证明: Tx=xbubuko.com,布布扣 的充分必要条件是 Tbubuko.com,布布扣?bubuko.com,布布扣x=xbubuko.com,布布扣 .

证明:  仅证必要性, 充分性类似可证. 由 Tx=xbubuko.com,布布扣 ||T||1bubuko.com,布布扣

||T||=1,bubuko.com,布布扣
||Tbubuko.com,布布扣?bubuko.com,布布扣||=||T||=1.bubuko.com,布布扣
于是
||Tbubuko.com,布布扣?bubuko.com,布布扣x?x||bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣(Tbubuko.com,布布扣?bubuko.com,布布扣x?x,Tbubuko.com,布布扣?bubuko.com,布布扣x?x)bubuko.com,布布扣||Tbubuko.com,布布扣?bubuko.com,布布扣x||bubuko.com,布布扣2bubuko.com,布布扣?(Tbubuko.com,布布扣?bubuko.com,布布扣x,x)?(x,Tbubuko.com,布布扣?bubuko.com,布布扣x)+||x||bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣||Tbubuko.com,布布扣?bubuko.com,布布扣x||bubuko.com,布布扣2bubuko.com,布布扣?(x,Tx)?(Tx,x)+||x||bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣||Tbubuko.com,布布扣?bubuko.com,布布扣x||bubuko.com,布布扣2bubuko.com,布布扣?||x||bubuko.com,布布扣2bubuko.com,布布扣( Tx=x)bubuko.com,布布扣||Tbubuko.com,布布扣?bubuko.com,布布扣||bubuko.com,布布扣2bubuko.com,布布扣?||x||bubuko.com,布布扣2bubuko.com,布布扣?||x||bubuko.com,布布扣2bubuko.com,布布扣bubuko.com,布布扣0( ||Tbubuko.com,布布扣?bubuko.com,布布扣||=1).bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
}

 

7 (15 分) 设 Hbubuko.com,布布扣 是 Hilbert 空间, T:HHbubuko.com,布布扣 是线性算子且满足

(Tx,y)=(x,Ty)(? x,yH).bubuko.com,布布扣
求证:

(1) TL(H)bubuko.com,布布扣 ;

(2)Tbubuko.com,布布扣?bubuko.com,布布扣=Tbubuko.com,布布扣 , 此时称 Tbubuko.com,布布扣 为自共轭算子;

(3)若 R(A)bubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣=Hbubuko.com,布布扣 , 则对 ? yR(A)bubuko.com,布布扣 , 方程

Ax=ybubuko.com,布布扣
存在唯一解.

证明:   

(1)往证 Tbubuko.com,布布扣 是闭算子, 而由 D(T)=Hbubuko.com,布布扣 及闭图像定理知 TL(H)bubuko.com,布布扣 . 事实上, 设 H?xbubuko.com,布布扣nbubuko.com,布布扣x, Txbubuko.com,布布扣nbubuko.com,布布扣ybubuko.com,布布扣 , 则于

(Txbubuko.com,布布扣nbubuko.com,布布扣,z)=(xbubuko.com,布布扣nbubuko.com,布布扣,z)(? zH)bubuko.com,布布扣
中令 nbubuko.com,布布扣 ,有
(y,z)=(x,Tz)=(Tx,z)(? zH).bubuko.com,布布扣
于是
y=Tx.bubuko.com,布布扣

(2)参见书 P 151 T 2.5.9(1).

(3)参见书 P 151 T 2.5.9(2).

 

8 (10 分) 设 φC[0,1]bubuko.com,布布扣 , T: Lbubuko.com,布布扣2bubuko.com,布布扣[0,1]Lbubuko.com,布布扣2bubuko.com,布布扣[0,1]bubuko.com,布布扣 是由

(Tf)(x)=φ(x)bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣φ(t)f(t) dt(? fLbubuko.com,布布扣2bubuko.com,布布扣[0,1])bubuko.com,布布扣
给出的线性算子. 求证:  

(1)Tbubuko.com,布布扣 是自共轭算子 (定义见题7);

(2)? λ0bubuko.com,布布扣 , 使得 Tbubuko.com,布布扣2bubuko.com,布布扣=λTbubuko.com,布布扣 , 由此求出 Tbubuko.com,布布扣 的谱半径 rbubuko.com,布布扣σbubuko.com,布布扣(T)bubuko.com,布布扣

证明: 

(1)对 ? f, gLbubuko.com,布布扣2bubuko.com,布布扣[0,1]bubuko.com,布布扣 , 由

(Tf,g)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣[φ(x)bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣φ(t)f(t) dt]?g(x) dxbubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣φ(t)f(t) dt?bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣φ(x)g(x) dxbubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣φ(x)f(x) dx?bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣φ(t)g(t) dtbubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣f(x)?[φ(x)bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣φ(t)g(t) dt] dxbubuko.com,布布扣(f,Tg)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
Tbubuko.com,布布扣?bubuko.com,布布扣=Tbubuko.com,布布扣 , 而 Tbubuko.com,布布扣 为自共轭算子.

(2)由

(Tbubuko.com,布布扣2bubuko.com,布布扣f)(x)bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣=bubuko.com,布布扣bubuko.com,布布扣[T(Tf)](x)bubuko.com,布布扣φ(x)bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣φ(t)(Tf)(t) dtbubuko.com,布布扣φ(x)bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣[φ(t)?φ(t)bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣φ(s)f(s) ds] dtbubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣φbubuko.com,布布扣2bubuko.com,布布扣(t)dt?φ(x)bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣φ(s)f(s) dsbubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣φbubuko.com,布布扣2bubuko.com,布布扣(t)dt?(Tf)(x)(? fLbubuko.com,布布扣2bubuko.com,布布扣[0,1])bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣
Tbubuko.com,布布扣2bubuko.com,布布扣=λT,bubuko.com,布布扣
其中
λ=bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣φbubuko.com,布布扣2bubuko.com,布布扣(t)dt.bubuko.com,布布扣
由数学归纳法易知
Tbubuko.com,布布扣nbubuko.com,布布扣=λbubuko.com,布布扣n?1bubuko.com,布布扣T(n1),bubuko.com,布布扣
Tbubuko.com,布布扣 的谱半径
rbubuko.com,布布扣σbubuko.com,布布扣(T)=limbubuko.com,布布扣nbubuko.com,布布扣||Tbubuko.com,布布扣nbubuko.com,布布扣||bubuko.com,布布扣1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=limbubuko.com,布布扣nbubuko.com,布布扣λbubuko.com,布布扣n?1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣||T||bubuko.com,布布扣1bubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣=λ=bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣φbubuko.com,布布扣2bubuko.com,布布扣(t)dt.bubuko.com,布布扣
倒数第二个等号是因为若 φ0bubuko.com,布布扣 , 则 λ=0bubuko.com,布布扣 , T=0bubuko.com,布布扣 ; 若 φ≡?0bubuko.com,布布扣 , 则 ||T||0bubuko.com,布布扣 .

 

9 (10 分) 设 C[0,1]bubuko.com,布布扣 是连续函数空间, 赋以最大值范数

||x||bubuko.com,布布扣bubuko.com,布布扣=maxbubuko.com,布布扣t[0,1]bubuko.com,布布扣|x(t)|(? xC[0,1]).bubuko.com,布布扣
求证: 在 C[0,1]bubuko.com,布布扣 中, xbubuko.com,布布扣nbubuko.com,布布扣?xbubuko.com,布布扣0bubuko.com,布布扣bubuko.com,布布扣 的充分必要条件是
limbubuko.com,布布扣nbubuko.com,布布扣xbubuko.com,布布扣nbubuko.com,布布扣(t)=xbubuko.com,布布扣0bubuko.com,布布扣(t),? t[0,1]Q,bubuko.com,布布扣
supbubuko.com,布布扣n1bubuko.com,布布扣||xbubuko.com,布布扣nbubuko.com,布布扣||bubuko.com,布布扣bubuko.com,布布扣<.bubuko.com,布布扣

证明:  必要性. 对 ? t[0,1]Qbubuko.com,布布扣 , 易知

fbubuko.com,布布扣tbubuko.com,布布扣: C[0,1]?x?x(t)bubuko.com,布布扣
C[0,1]bubuko.com,布布扣 上的有界线性泛函, 而
limbubuko.com,布布扣nbubuko.com,布布扣xbubuko.com,布布扣nbubuko.com,布布扣(t)=limbubuko.com,布布扣nbubuko.com,布布扣fbubuko.com,布布扣tbubuko.com,布布扣(xbubuko.com,布布扣nbubuko.com,布布扣)=fbubuko.com,布布扣tbubuko.com,布布扣(xbubuko.com,布布扣0bubuko.com,布布扣)=xbubuko.com,布布扣0bubuko.com,布布扣(t).bubuko.com,布布扣
再把 xbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣 看成 C[0,1]bubuko.com,布布扣??bubuko.com,布布扣bubuko.com,布布扣 中的元素, 由共鸣定理,
supbubuko.com,布布扣n1bubuko.com,布布扣||xbubuko.com,布布扣nbubuko.com,布布扣||bubuko.com,布布扣bubuko.com,布布扣<.bubuko.com,布布扣
充分性. 由于 C[0,1]bubuko.com,布布扣 的共轭空间是
BV[0,1]={g:[0,1]C; g(t)=g(t+0) (? t[0,1)),bubuko.com,布布扣g(0)=0, var(g)<bubuko.com,布布扣}bubuko.com,布布扣
(参见书 P 129 例 2.5.3), 且对 ? FC[0,1]bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣 有表示
F(x)=bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣x(t)dg(t)(? xC[0,1]).bubuko.com,布布扣
由充分性的假设及 Lebesgue 控制收敛定理,
limbubuko.com,布布扣nbubuko.com,布布扣F(xbubuko.com,布布扣nbubuko.com,布布扣)=limbubuko.com,布布扣nbubuko.com,布布扣bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣xbubuko.com,布布扣nbubuko.com,布布扣(t)dg(t)=bubuko.com,布布扣1bubuko.com,布布扣0bubuko.com,布布扣xbubuko.com,布布扣0bubuko.com,布布扣(t)dg(t)=F(xbubuko.com,布布扣0bubuko.com,布布扣).bubuko.com,布布扣

 

应老师要求, 修改了[家里蹲大学数学杂志]第036期泛函分析期末试题, 而得到了本文, 并给出了参考解答.

[家里蹲大学数学杂志]第037期泛函分析期末试题,布布扣,bubuko.com

[家里蹲大学数学杂志]第037期泛函分析期末试题

原文:http://www.cnblogs.com/zhangzujin/p/3752359.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!