原题地址:https://oj.leetcode.com/problems/climbing-stairs/
题意:
You are climbing a stair case. It takes n steps to reach to the top.
Each time you can either climb 1 or 2 steps. In how many distinct ways can you climb to the top?
解题思路:
爬楼梯问题。经典的动态规划问题。每次上一个台阶或者两个台阶,问一共有多少种方法到楼顶。这个实际上就是斐波那契数列的求解。可以逆向来分析问题,如果有n个台阶,那么走完n个台阶的方式有f(n)种。而走完n个台阶有两种方法,先走完n-2个台阶,然后跨2个台阶;先走完n-1个台阶,然后跨1个台阶。所以f(n) = f(n-1) + f(n-2)。
代码:
class Solution: # @param n, an integer # @return an integer def climbStairs(self, n): dp = [1 for i in range(n+1)] for i in range(2, n+1): dp[i] = dp[i-1] + dp[i-2] return dp[n]
[leetcode]Climbing Stairs @ Python,布布扣,bubuko.com
[leetcode]Climbing Stairs @ Python
原文:http://www.cnblogs.com/zuoyuan/p/3753553.html