首页 > 其他 > 详细

动态规划系列【3】最长公共子序列

时间:2017-03-06 15:14:47      阅读:197      评论:0      收藏:0      [点我收藏+]
对于两个字符串,请设计一个高效算法,求他们的最长公共子序列的长度,这里的最长公共子序列定义为有两个序列U1,U2,U3...Un和V1,V2,V3...Vn,其中Ui&ltUi+1,Vi&ltVi+1。且A[Ui] == B[Vi]。
给定两个字符串A和B,同时给定两个串的长度n和m,请返回最长公共子序列的长度。保证两串长度均小于等于300。
测试样例:
"1A2C3D4B56",10,"B1D23CA45B6A",12
返回:6

题意:动态规划经典问题

public static int findLCS(String A, int n, String B, int m) {
	        // write code here
	        //dp[i][j]表示A的前i个字符和B的前j个字符组成的最长公共子序列长度
	        int[][] dp=new int [n+1][m+1];
	        for(int i=0;i<=n;i++)dp[i][0]=0;
	        for(int j=0;j<=m;j++)dp[0][j]=0;
	        for(int i=1;i<=n;i++)
	            for(int j=1;j<=m;j++)
	                if(A.charAt(i-1)!=B.charAt(j-1)){
	                    dp[i][j]=Math.max(dp[i][j-1],dp[i-1][j]);
	                }else{
	                    dp[i][j]=dp[i-1][j-1]+1;
	                }
	        return dp[n][m];
	    }
public static int findLCS2(String A,int n,String B,int m){
		int[][] dp=new int[n][m];
		dp[0][0]=A.charAt(0)==B.charAt(0)?1:0;
		//dp[i][j]表示A[0..i]和B[0...j]的最长公共子序列长度
		for(int i=1;i<n;i++){
			dp[i][0]=Math.max(A.charAt(i)==B.charAt(0)?1:0,dp[i-1][0]);
		}
		for(int j=1;j<m;j++){
			dp[0][j]=Math.max(A.charAt(0)==B.charAt(j)?1:0,dp[0][j-1]);
		}
		for(int i=1;i<n;i++)
			for(int j=1;j<m;j++){
				dp[i][j]=Math.max(dp[i-1][j], dp[i][j-1]);
				if(A.charAt(i)==B.charAt(j)){
					dp[i][j]=dp[i-1][j-1]+1;
				}
			}
		return dp[n-1][m-1];
	}

O(mn)


动态规划系列【3】最长公共子序列

原文:http://fulin0532.blog.51cto.com/6233825/1903586

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!