聚类主要内容是将样本进行归类,同种类别的样本放到一起,所有样本最终会形成K个簇,它属于无监督学习。
根据给定的K值和K个初始质心将样本中每个点都分到距离最近的类簇中,当所有点分配完后根据每个类簇的所有点重新计算质心,一般是通过平均值计算,然后再将每个点分到距离最近的新类簇中,不断循环此操作,直到质心不再变化或达到一定的迭代次数。数学上可以证明k-means是收敛的。
随机选择k个初始质心
while(true){
计算每个点到最近距离的质心,归为该类。
重新计算每个类的质心。
if(质心与上一次质心一样or达到最大迭代次数)
break;
}
from numpy import *
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
def kmeans(dataSet, k):
sampleNum, col = dataSet.shape
cluster = mat(zeros((sampleNum, 2)))
centroids = zeros((k, col))
##choose centroids
for i in range(k):
index = int(random.uniform(0, sampleNum))
centroids[i, :] = dataSet[index, :]
clusterChanged = True
while clusterChanged:
clusterChanged = False
for i in range(sampleNum):
minDist = sqrt(sum(power(centroids[0, :] - dataSet[i, :], 2)))
minIndex = 0
for j in range(1,k):
distance = sqrt(sum(power(centroids[j, :] - dataSet[i, :], 2)))
if distance < minDist:
minDist = distance
minIndex = j
if cluster[i, 0] != minIndex:
clusterChanged = True
cluster[i, :] = minIndex, minDist**2
for j in range(k):
pointsInCluster = dataSet[nonzero(cluster[:, 0].A == j)[0]]
centroids[j, :] = mean(pointsInCluster, axis = 0)
return centroids, cluster
dataSet = [[1,1],[3,1],[1,4],[2,5],[11,12],[14,11],[13,12],[11,16],[17,12],[28,10],[26,15],[27,13],[28,11],[29,15]]
dataSet = mat(dataSet)
k = 3
centroids, cluster = kmeans(dataSet, k)
sampleNum, col = dataSet.shape
mark = [‘or‘, ‘ob‘, ‘og‘]
for i in range(sampleNum):
markIndex = int(cluster[i, 0])
plt.plot(dataSet[i, 0], dataSet[i, 1], mark[markIndex])
mark = [‘+r‘, ‘+b‘, ‘+g‘]
for i in range(k):
plt.plot(centroids[i, 0], centroids[i, 1], mark[i], markersize=12)
plt.show()
结果:
直接用机器学习库更加方便
from numpy import *
import matplotlib.pyplot as plt
from sklearn.cluster import KMeans
dataSet = [[1,1],[3,1],[1,4],[2,5],[11,12],[14,11],[13,12],[11,16],[17,12],[28,10],[26,15],[27,13],[28,11],[29,15]]
dataSet=mat(dataSet)
k = 3
markers = [‘^‘, ‘o‘, ‘x‘]
cls =KMeans(k).fit(dataSet)
for i in range(k):
members=cls.labels_==i
plt.scatter(dataSet[members,0],dataSet[members,1],marker=markers[i])
plt.show()
欢迎关注公众号:
原文:http://blog.csdn.net/wangyangzhizhou/article/details/60780877