(from MathFlow) 设 A=(aij)
, 且定义
试证: (1) ?Atr(AB)=Bt
; (2) ?Atr(ABAtC)=CAB+CtABt
.
证明: (1)
?Atr(AB)=????aij∑m,namnbnm??=??∑m,nδmiδnjbnm??=(bji)=Bt.
(2)
?Atr(ABAtC)=????aij∑m,n,p,qamnbnpaqpcqm??=??∑m,n,p,qδmiδnjbnpaqpcqm+∑m,n,p,qamnbnpδqiδpjcqm??=??∑p,qbjpaqpcqi+∑m,namnbnjcim??=??∑p,qcqiaqpbjp+∑m,ncimamnbnj??=CtABt+CAB.
[再寄小读者之数学篇](2014-05-27 矩阵的迹与 Jacobian),布布扣,bubuko.com
[再寄小读者之数学篇](2014-05-27 矩阵的迹与 Jacobian)
原文:http://www.cnblogs.com/zhangzujin/p/3755951.html