首页 > 数据库技术 > 详细

Spark SQL中的broadcast join分析

时间:2017-03-26 20:39:45      阅读:832      评论:0      收藏:0      [点我收藏+]

  在Spark-1.6.2中,执行相同join查询语句,broadcast join模式下,DAG和执行时间如下图所示:
1、broadcast join
(1)DAG
  
  技术分享
  
(2)执行时间

122 rows selected (22.709 seconds)

  
2、非broadcast join
(1)DAG
  
  技术分享
  
(2)执行时间

122 rows selected (55.512 seconds)

  对于broadcast join模式,会将小于spark.sql.autoBroadcastJoinThreshold值(默认为10M)的表广播到其他计算节点,不走shuffle过程,所以会更加高效。

一、Spark源码解析

  源码中的基本流程如下所示:

1、org.apache.spark.sql.execution.SparkStrategies

  决定是否使用broadcast join的逻辑在SparkStrategies类中,

/**
* Matches a plan whose output should be small enough to be used in broadcast join.
*/
object CanBroadcast {
  def unapply(plan: LogicalPlan): Option[LogicalPlan] = plan match {
    case BroadcastHint(p) => Some(p)
    case p if sqlContext. conf.autoBroadcastJoinThreshold > 0 &&
      p.statistics.sizeInBytes <= sqlContext.conf.autoBroadcastJoinThreshold => Some(p)
    case _ => None
  }
}

  这里面sqlContext.conf.autoBroadcastJoinThreshold由参数spark.sql.autoBroadcastJoinThreshold来设置,默认为10 * 1024 * 1024Bytes(10M)。上面这段逻辑是说,如果该参数值大于0,并且p.statistics.sizeInBytes的值比该参数值小时,就会认为该表比较小,在做join时会broadcast到各个executor上,从而避免了shuffle过程。

2、org.apache.spark.sql.hive.HiveMetastoreCatalog

  p.statistics.sizeInBytes的值,查看HiveMetastoreCatalog类文件,如下所示

@transient override lazy val statistics: Statistics = Statistics(
  sizeInBytes = {
    val totalSize = hiveQlTable.getParameters.get(StatsSetupConst.TOTAL_SIZE)
    val rawDataSize = hiveQlTable .getParameters.get(StatsSetupConst.RAW_DATA_SIZE)
    // TODO: check if this estimate is valid for tables after partition pruning.
    // NOTE: getting `totalSize` directly from params is kind of hacky, but this should be
    // relatively cheap if parameters for the table are populated into the metastore.  An
    // alternative would be going through Hadoop‘s FileSystem API, which can be expensive if a lot
    // of RPCs are involved.  Besides `totalSize`, there are also `numFiles`, `numRows`,
    // `rawDataSize` keys (see StatsSetupConst in Hive) that we can look at in the future.
    BigInt(
      // When table is external,`totalSize` is always zero, which will influence join strategy
      // so when `totalSize` is zero, use `rawDataSize` instead
      // if the size is still less than zero, we use default size
      Option (totalSize).map(_.toLong).filter(_ > 0)
        .getOrElse(Option (rawDataSize).map(_.toLong).filter(_ > 0)
        .getOrElse(sqlContext.conf.defaultSizeInBytes)))
  }
)

  会从hive的tblproperties属性中优先取出totalSize的数值,如果该值不大于0,则取rawDataSize的值,如果该值也不大于0,那么就取sqlContext.conf.defaultSizeInBytes

3、org.apache.spark.sql.SQLConf

  那么sqlContext.conf.defaultSizeInBytes又是多少呢?这个值配置在SQLConf类中,如下所示。

private[spark] def defaultSizeInBytes: Long =
  getConf(DEFAULT_SIZE_IN_BYTES , autoBroadcastJoinThreshold + 1L )

  取DEFAUTL_SIZE_IN_BYTES的值,这个值一般需要设置的比spark.sql.autoBroadcastJoinThreshold大,以避免其他表被broadcast出去了。可以看到,默认值为autoBroadcastJoinThreshold值加1。

  上面这一段的意思是,按顺序取hive的表统计信息中的totalSize属性和rawDataSize属性,直到取到一个大于零的值为止。如果这两个值都不大于零,那么就默认该表不能被broadcast出去。
  

二、问题

  从上面的过程可以看出,确定是否广播小表的决定性因素是hive的表统计信息一定要准确。并且,由于视图是没有表统计信息的,所以所有的视图在join时都不会被广播。

  假如遇到这种需求:有一张全量快照分区表A,需要有一张表B永远指向表A的最新分区,但是又不能影响表B的broadcast join功能。

1、问题1:直接insert会慢

  最直接的做法是使用insert overwrite table B select * from A where partition=‘20170322‘来进行,在插入数据到B表后,会更新该表的totalSizerawDataSize属性。

  但是每次进行insert是一个很耗时的过程。

2、问题2:set location不更新表统计信息

  如果想要避免这一过程的话,是不是可以用alter table B set location ‘PATH_TO_TABLE_A/partition=20170322‘的形式呢?可以这样做,但是这样又不会每次更新totalSizerawDataSize属性了。

  如果需要更新表统计信息的话,测试过了alter table B set tblproperties(‘totalSize‘=‘123‘)语句,也不能生效。
  如下所示,在更新前后,不仅totalSize没有变化,反而将rawDataSize给置为了-1。并且多了一些之前没有的默认值

0: jdbc:hive2://client:10000> show tblproperties shop_info;
numFiles    1
COLUMN_STATS_ACCURATE    true
transient_lastDdlTime    1490283932
totalSize    102030
numRows    2000
rawDataSize    100030

0: jdbc:hive2://client:10000> alter table shop_info set tblproperties(‘totalSize‘=‘1234‘);

0: jdbc:hive2://client:10000> show tblproperties shop_info;                               
numFiles    1
last_modified_by    hadoop
last_modified_time    1490284040
transient_lastDdlTime    1490284040
COLUMN_STATS_ACCURATE    false
totalSize    102030
numRows    -1
rawDataSize    -1

  只能执行analyze table B compute statistics语句来跑map-reduce任务来统计了,这一过程也会比较耗时。

3、问题3:external table set location后会清除表统计信息

  并且最好将表B建成external table形式,避免删除表B时将表A的数据删除掉。

  在实践中发现,每次对external tale进行set location操作后,即使重新统计过表信息,它的totalSizerawDataSize仍然会被清除掉。

# 首先按照shop_info表格式创建一个外部表,
0: jdbc:hive2://client:10000> create external table test_broadcast like shop_info;

# 查看表信息
0: jdbc:hive2://client:10000>  show tblproperties test_broadcast;
EXTERNAL    TRUE
transient_lastDdlTime    1490284194

# 重定向location
0: jdbc:hive2://client:10000> alter table test_broadcast set location ‘hdfs://m000/user/hive/warehouse/tianchi.db/user_pay_train‘;

# 查看表信息
0: jdbc:hive2://client:10000>  show tblproperties test_broadcast;
numFiles    0
EXTERNAL    TRUE
last_modified_by    hadoop
last_modified_time    1490284413
COLUMN_STATS_ACCURATE    false
transient_lastDdlTime    1490284413
numRows    -1
totalSize    0
rawDataSize    -1

# 统计表信息
0: jdbc:hive2://client:10000> analyze table test_broadcast compute statistics;

# 查看表信息
0: jdbc:hive2://client:10000>show tblproperties test_broadcast;
numFiles    0
EXTERNAL    TRUE
last_modified_by    hadoop
last_modified_time    1490284413
transient_lastDdlTime    1490284751
COLUMN_STATS_ACCURATE    true
numRows    65649782
totalSize    0
rawDataSize    2098020423

# 再次重定向
0: jdbc:hive2://client:10000> alter table test_broadcast set location ‘hdfs://m000/user/hive/warehouse/tianchi.db/user_pay‘;

# 查看表信息
0: jdbc:hive2://client:10000>show tblproperties test_broadcast;
numFiles    0
EXTERNAL    TRUE
last_modified_by    hadoop
last_modified_time    1490284790
transient_lastDdlTime    1490284790
COLUMN_STATS_ACCURATE    false
numRows    -1
totalSize    0
rawDataSize    -1

三、解决办法

  遇到这个问题有没有觉得很棘手。

1、问题分析

  其实方法已经在上面展示过了。我们来看一下org.apache.spark.sql.hive.HiveMetastoreCatalog类中关于statistics的注释:

// NOTE: getting totalSize directly from params is kind of hacky, but this should be
// relatively cheap if parameters for the table are populated into the metastore. An
// alternative would be going through Hadoop’s FileSystem API, which can be expensive if a lot
// of RPCs are involved. Besides totalSize, there are also numFiles, numRows,
// rawDataSize keys (see StatsSetupConst in Hive) that we can look at in the future.

  这里说,直接获取totalSize并不是一个友好的办法,直接从这里获取totalSize只是相对比较快而已。其实可以通过HDFS的FileSystem API来获取该表在HDFS上的文件大小的。

  看到这里,应该已经有了一个基本方法了。那就是将表B建为external table,并且每次遇到external table,直接去取hdfs上的文件大小。每次set location即可。这里唯一需要注意的是,通过HDFS FileSystem API获取文件大小是否耗时。这个可以通过下面的代码测试一下。

2、性能测试

  测一下HDFS FileSystem API获取文件大小的耗时。

object HDFSFilesystemTest {
  def main(args: Array[String ]) {
    val conf = new Configuration()
    conf.set("fs.default.name" , "hdfs://m000:8020")
    val hiveWarehouse = "/user/hive/warehouse"
    val path = new Path(hiveWarehouse)
    val fs: FileSystem = path.getFileSystem(conf)

    val begin = System.currentTimeMillis()
    val size = fs.getContentSummary(path).getLength
    println( s"$hiveWarehouse size is: $size Bytes")
    val end = System.currentTimeMillis()
    println( s"time consume ${end - begin} ms")
  }
}

  输出结果如下,统计hive warehouse路径大小,耗时132毫秒。

/user/hive/warehouse size is: 4927963752 Bytes
time consume 132 ms

3、源码修改

  那么接下来修改一下org.apache.spark.sql.hive.HiveMetastoreCatalog中获取表大小的逻辑就可以了。

  由于外部表会被重定向路径,或者指向路径的文件可以直接被put上来,所以统计的totalSize或者rawDataSize一般不准确。因此如果是外部表,直接获取hdfs文件大小。如果是非外部表,则按顺序取totalSize,rawDataSize的值,如果都不大于0,则通过HDFS FileSystem API获取hdfs文件大小了。

@transient override lazy val statistics: Statistics = Statistics(
  sizeInBytes = {
    BigInt (if ( hiveQlTable.getParameters.get("EXTERNAL" ) == "TRUE") {
      try {
        val hadoopConf = sqlContext.sparkContext.hadoopConfiguration
        val fs: FileSystem = hiveQlTable.getPath.getFileSystem(hadoopConf)
        fs.getContentSummary(hiveQlTable.getPath).getLength
      } catch {
        case e: IOException =>
          logWarning("Failed to get table size from hdfs." , e)
          sqlContext.conf.defaultSizeInBytes
      }
    } else {
      val totalSize = hiveQlTable .getParameters.get(StatsSetupConst. TOTAL_SIZE)
      val rawDataSize = hiveQlTable .getParameters.get(StatsSetupConst. RAW_DATA_SIZE)
      // TODO: check if this estimate is valid for tables after partition pruning.
      // NOTE: getting `totalSize` directly from params is kind of hacky, but this should be
      // relatively cheap if parameters for the table are populated into the metastore.  An
      // alternative would be going through Hadoop‘s FileSystem API, which can be expensive if a lot
      // of RPCs are involved.  Besides `totalSize`, there are also `numFiles`, `numRows`,
      // `rawDataSize` keys (see StatsSetupConst in Hive) that we can look at in the future.
      if (totalSize != null && totalSize.toLong > 0L) {
        totalSize.toLong
      } else if (rawDataSize != null && rawDataSize.toLong > 0L) {
        rawDataSize.toLong
      } else {
        try {
          val hadoopConf = sqlContext.sparkContext.hadoopConfiguration
          val fs: FileSystem = hiveQlTable.getPath.getFileSystem(hadoopConf)
          fs.getContentSummary(hiveQlTable.getPath).getLength
        } catch {
          case e: IOException =>
            logWarning("Failed to get table size from hdfs." , e)
            sqlContext.conf.defaultSizeInBytes
        }
      }
    })
  }
)

  改为之后,看了一下Spark-2中的源码,发现在org.apache.spark.sql.hive.MetastoreRelation中已经对此次进行了修改,如下所示:

  @transient override lazy val statistics: Statistics = {
    catalogTable.stats.getOrElse(Statistics(
      sizeInBytes = {
        val totalSize = hiveQlTable.getParameters.get(StatsSetupConst.TOTAL_SIZE)
        val rawDataSize = hiveQlTable.getParameters.get(StatsSetupConst.RAW_DATA_SIZE)
        // TODO: check if this estimate is valid for tables after partition pruning.
        // NOTE: getting `totalSize` directly from params is kind of hacky, but this should be
        // relatively cheap if parameters for the table are populated into the metastore.
        // Besides `totalSize`, there are also `numFiles`, `numRows`, `rawDataSize` keys
        // (see StatsSetupConst in Hive) that we can look at in the future.
        BigInt(
          // When table is external,`totalSize` is always zero, which will influence join strategy
          // so when `totalSize` is zero, use `rawDataSize` instead
          // when `rawDataSize` is also zero, use `HiveExternalCatalog.STATISTICS_TOTAL_SIZE`,
          // which is generated by analyze command.
          if (totalSize != null && totalSize.toLong > 0L) {
            totalSize.toLong
          } else if (rawDataSize != null && rawDataSize.toLong > 0) {
            rawDataSize.toLong
          } else if (sparkSession.sessionState.conf.fallBackToHdfsForStatsEnabled) {
            try {
              val hadoopConf = sparkSession.sessionState.newHadoopConf()
              val fs: FileSystem = hiveQlTable.getPath.getFileSystem(hadoopConf)
              fs.getContentSummary(hiveQlTable.getPath).getLength
            } catch {
              case e: IOException =>
                logWarning("Failed to get table size from hdfs.", e)
                sparkSession.sessionState.conf.defaultSizeInBytes
            }
          } else {
            sparkSession.sessionState.conf.defaultSizeInBytes
          })
      }
    ))
  }

4、效果展示

  对一张文件大小小于spark.sql.autoBroadcastJoinThreshold的external table进行表信息统计,将totalSize和rawDataSize置为不大于0的值后。分别在改源码前后进行测试。

(1)改动前
  执行join语句,DAG执行计划如下图所示:
  
  技术分享
  
  执行时间如下所示:

122 rows selected (58.862 seconds)

(2)改动后
  执行join语句,DAG执行计划如下图所示:
  
  技术分享
  
  执行时间如下图所示:

122 rows selected (27.484 seconds)

  可以看到,改动源码后,走了broadcast join,并且执行时间明显缩短。

Spark SQL中的broadcast join分析

原文:http://blog.csdn.net/dabokele/article/details/65963401

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!