状态:定义二维数组P[i,j]用以表示Si…Sj是回文(true)或不是回文(false)
状态转移方程 : P[i,j] = (P[i + 1, j - 1] && Si ==Sj)
初始条件是:P[i, i]=true,P[i, i + 1] = (Si == Si+1)
C++版( 使用 C++ 、java可以A , Python超时)
class Solution {public:string longestPalindrome(string s) {int l = s.length();bool p[1000][1000] = {false};int max_len = 1 , max_beg = 0;p[l-1][l-1] = true;for(int i=0;i<l;i++){p[i][i] = true;if(s[i] == s[i+1]){p[i][i+1] = true;max_len = 2;max_beg = i;}}for(int length=3 ;length<=l ;length++){for(int i=0;i<=l-length;i++){int j = i+length-1;if(s[i] == s[j] && p[i+1][j-1]){p[i][j] = true;max_beg = i;max_len = length;}}}return s.substr(max_beg,max_len);}};
public class Solution {public String longestPalindrome(String s) {int n = s.length();if( n == 0 ) return s;String str = s.substring(0,1);boolean[][] dp = new boolean[n][n];for ( int i=0;i<n-1;i++ ){dp[i][i] = true;if( s.charAt(i) == s.charAt(i+1) ){str = s.substring(i,i+2);dp[i][i+1] = true;}}dp[n-1][n-1] = true;//初始化完成 O(n)for( int i=n-2;i>=0;i-- )for( int j=i+2;j<n;j++ ){dp[i][j] = dp[i+1][j-1] && (s.charAt(i) == s.charAt(j));if( dp[i][j] == true && j-i+1 > str.length() )str = s.substring(i,j+1);}return str;}}
s=‘gsdabcdcbaee‘l = len(s)p = [[False]*l for i in range(l)]# initmax_len , max_beg = 1 , 0p[l-1][l-1] = Truefor i in range(l-1):p[i][i] = Trueif s[i] == s[i+1]:p[i][i+1] = Truemax_len = 2max_beg = ifor length in range(3,l+1):for i in range(0,l-length+1):j = i+length-1if s[i] == s[j] and p[i+1][j-1]:p[i][j] = Truemax_beg = imax_len = lengthprint s[max_beg:max_beg+max_len]
def Palindromic( s , i , j ):l = len(s)curLen = 0while i>=0 and j<l and s[i] == s[j]:i -= 1j += 1curLen = (j - 1) - (i + 1) + 1return curLenclass Solution(object):def longestPalindrome(self, s):start = 0max_len = 1for i in range(len(s)):curOdd = Palindromic(s,i,i)if curOdd > max_len:max_len = curOddstart = i - curOdd/2if i+1<len(s):curEven = Palindromic(s,i,i+1)if curEven > max_len:max_len = curEvenstart = i + 1 - curEven/2return s[start:start+max_len]
public class Solution {public String longestPalindrome(String s) {//预处理StringBuffer sb = new StringBuffer("^#");for( int i=0;i<s.length();i++ ){sb.append(s.substring(i,i+1)+"#");}sb.append("$");String str = sb.toString();//预处理完毕int[] p = new int[str.length()];int mx = 0 , id = 0;for( int i=1;i<str.length()-1;i++ ){p[i] = mx>i ? Math.min( p[ 2*id-i ] , mx - i + 1 ) : 1;while( str.charAt( i+p[i] ) == str.charAt( i-p[i] )) ++p[i];if( p[i] > p[id] ) {id = i;mx = i + p[i] - 1;}}return s.substring( (2 * id - mx - 1) / 2 , (mx-1)/2 );}}
5. Longest Palindromic Substring【字符串 DP】
原文:http://www.cnblogs.com/flyfatty/p/6656423.html