学习机器学习有很多方法,大多数人选择从理论开始。
如果你是个程序员,那么你已经掌握了把问题拆分成相应组成部分及设计小项目原型的能力,这些能力能帮助你学习新的技术、类库和方法。这些对任何一个职业程序员来说都是重要的能力,现在它们也能用在初学机器学习上。
要想有效地学习机器学习你必须学习相关理论,但是你可以利用你的兴趣及对知识的渴望,来激励你从实际例子学起,然后再步入对算法的数学理解。
通过本文你可以学习到程序员初学机器学习的四种方式。这是给技术人员设计的实用方法,并以实验为依据,你需要做调研并且完成实验才能建立自己的感性知识。
这四种方法分别是:
你应该通读一下这些方法的策略,然后选择你觉得最适合自己的一个,并且有选择性地执行。
1. 学习一个机器学习工具
选一个你喜欢的工具或者类库,然后学着用好它。
我推荐你从一个自带数据预处理工具,机器学习算法并且能呈现结果的工作平台开始学习。学习这样一个工作平台能让你更熟悉机器学习从头到尾的整个过程,这比学习一个特定的数据处理技术或者一个机器学习算法更有价值。
或者,也许你感兴趣的是一个特定技术或者一类技术。你可以利用这个机会更深入地学习一个提供这些方法的类库或工具,掌握了提供这些技术的类库能帮助你掌握相应的技术。
一些你可以采取的策略有:
一些值得考虑的工作平台有:R, Weka, scikit-learn, waffles, 和 orange.
2. 学习一个机器学习数据集
选一个数据集,然后深入地理解它,发掘究竟哪类算法最适合处理它。
我推荐你选择一个中等大小的,内存能放下的,可能被很多人研究过的数据集。现在有很多非常好的包含数据的类库,你可以浏览它们并且从中选择。你的目的是尝试理解这个数据集背后的问题,它的结构,和哪些种类的解决方法最适合这个问题。
用一个机器学习或者统计的工作平台来研究这个数据集。这样你能专心解答关于这个数据集你要研究的问题,而不是分心去学习某个特定的技术或者如何写代码来实现它。
一些可以帮助你学习实验性的机器学习数据集的策略有:
你可以从这些包含高质量数据集的库中选择: UCI ML Repository,Kaggle 和 data.gov.
3. 学习一个机器学习算法
选择一个算法,深入理解它,发掘什么样的参数设置在不同数据集上都稳定。
我推荐你从一个中等复杂度的算法开始学起。选一个已经被人充分理解了的,有许多可选的开源实现,并且需要你探索的参数数目较少的算法。你的目的是建立有关这个算法在不同问题和不同参数设定下表现如何的直觉。
使用一个机器学习平台或者类库。这样能让你把这个算法当成一个“系统”,专心研究它的表现,而不是分心研究数学公式描述或者相关论文。
一些学习你选定的机器学习算法时可采取的策略有:
你可以学简单点,也可以学复杂点。想多学一点的话,你可以探索所谓的启发式规则或经验法则来使用算法,并且以实验为依据来展示它们好不好用,及如果好用的话在什么条件下他们与成功的结果有关联。
一些你可以考虑学习的算法有:最小平方线性回归,逻辑回归,K最近邻分类算法,感知器算法。
4. 实现一个机器学习算法
选一个算法,然后选一个编程语言来实现它,或者把一个已有的实现移植到你选定的编程语言上。
你应选择一个中等复杂度的算法来实现。我推荐你仔细研究你想要实现的算法,或选择一个你喜欢的已有实现然后把它移植到你选定的编程语言。
从头开始实现一个算法,是学习那些关于把算法描述转换成一个可行的系统的过程中必须要做的无数的小决定的好方法。在不同算法上重复这个过程,很快你就能对读懂论文和书里面算法的数学描述有感觉了。
五个能帮助你从头开始实现机器学习算法的策略有:
小型项目方法论
以上四个策略属于我称为“小型项目”的方法论。你用这个方法可以很快建立在技术领域(比如机器学习)方面的实用技能。大意就是你设计并且亲手完成解决特定问题的小项目。
小型项目在几个方面应该足够小,才能保证你能完成它们并且从中学习,然后好步入到下一个项目中去。下面是一些你应该考虑加在项目上的一些限制:
额外有关项目的小贴士
这些策略的原则是让你利用你的程序员技能开始行动。下面是三条帮助你调整思维模式,有助你开始行动的小贴士:
总结
下面是这些策略的一句话清晰总结,可以帮助你选择适合自己的那个。
选一个吧!
PDF 指导手册
如果你喜欢这篇自学策略文章,作者创建了一个 32 页的有关学习并实践应用机器学习的 PDF 指导手册。看这里:
作者还创建了一个包含 90 个项目想法的清单,作为附加福利加在这个指导里面了。
翻译: 伯乐在线 - XiaoxiaoLi
译文链接: http://blog.jobbole.com/67621/
原文:http://blog.csdn.net/huaweitman/article/details/27353895