首页 > 其他 > 详细

PGM_Foundations

时间:2017-04-13 00:22:42      阅读:222      评论:0      收藏:0      [点我收藏+]

Chain Rule and Bayesian Rule

From the definition of the conditional distribution, we see that

$$P(\alpha_1 \cap ... \cap \alpha_k)=P(\alpha_1)P(\alpha_2 \vert \alpha_1)...P(\alpha_k \vert \alpha_1 \cap ...\cap \alpha_{k-1})~~(Chain~Rule)$$

$$P(\alpha \vert \beta)=\frac{P(\beta \vert \alpha)P(\alpha)}{P(\beta)}~~(Bayesian~Rule)$$

A more general conditional version of Bayes’ rule, where all our probabilities are conditioned on some background event $\gamma$, also holds $$P(\alpha \vert \beta \cap \gamma)=\frac{P(\beta \vert \alpha \cap \gamma)P(\alpha \cap \gamma)}{P(\beta \cap \gamma)}$$

 

PGM_Foundations

原文:http://www.cnblogs.com/chaseblack/p/6702008.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!