首页 > 其他 > 详细

POJ 3368 Frequent values (基础RMQ)

时间:2017-04-14 09:43:14      阅读:265      评论:0      收藏:0      [点我收藏+]


Frequent values
Time Limit: 2000MS   Memory Limit: 65536K
Total Submissions: 14742   Accepted: 5354

Description

You are given a sequence of n integersa1 , a2 , ... , an in non-decreasing order. In addition to that, you are given several queries consisting of indicesi and j (1 ≤ i ≤ j ≤ n). For each query, determine the most frequent value among the integersai , ... , aj.

Input

The input consists of several test cases. Each test case starts with a line containing two integersn and q (1 ≤ n, q ≤ 100000). The next line containsn integers a1 , ... , an (-100000 ≤ ai ≤ 100000, for eachi ∈ {1, ..., n}) separated by spaces. You can assume that for each i ∈ {1, ..., n-1}: ai ≤ ai+1. The followingq lines contain one query each, consisting of two integers i and j (1 ≤ i ≤ j ≤ n), which indicate the boundary indices for the
query.

The last test case is followed by a line containing a single0.

Output

For each query, print one line with one integer: The number of occurrences of the most frequent value within the given range.

Sample Input

10 3
-1 -1 1 1 1 1 3 10 10 10
2 3
1 10
5 10
0

Sample Output

1
4
3

Source

Ulm Local 2007

题目链接:http://poj.org/problem?

id=3368

题目大意:有一串数字,查询区间中频数最大的数字的频数

题目分析:由于数字是按非递增序排列好的,我们能够先预处理出某连续数字在当前位置时出现的频数,比方例子有
dp[1]=1,val[1] = -1
dp[2]=2,val[2] = -1
dp[3]=1,val[3] = 1
dp[4]=2,val[4] = 1
dp[5]=3,val[5] = 1
dp[6]=4。val[6] = 1
。。。
则对于查询区间(l,r)。答案即为区间(l。tmp)和(tmp。r)某一数字出现的频数的较大的那个(l <= tmp <= r)
对于区间(l,tmp)直接可得出答案。对于区间(tmp, r)我们能够用RMQ求解

代码:

#include <cstdio>
#include <cstring>
#include <algorithm>
#include <cmath>
using namespace std;
int const MAX = 100005;
int st[MAX][20], dp[MAX], val[MAX];
int n, q;

void RMQ_Init()
{
    for(int i = 1; i <= n; i++)
        st[i][0] = dp[i];
    int k = log((double)(n + 1)) / log(2.0);
    for(int j = 1; j <= k; j++)
        for(int i = 1; i + (1 << j) - 1 <= n; i++)
            st[i][j] = max(st[i][j - 1], st[i + (1 << (j - 1))][j - 1]);
}

int Query(int l, int r)
{
    if(l > r)
        return 0;
    int k = log((double)(r - l + 1)) / log(2.0);
    return max(st[l][k], st[r - (1 << k) + 1][k]);
}

int main()
{
    while(scanf("%d", &n) != EOF && n)
    {   
        scanf("%d", &q);
        dp[1] = 1;
        for(int i = 1; i <= n; i++)
        {
            scanf("%d", &val[i]);
            if(i > 1)
                dp[i] = (val[i] == val[i - 1] ?

dp[i - 1] + 1 : 1); } RMQ_Init(); while(q--) { int l, r; scanf("%d %d", &l, &r); int tmp = l; while(tmp <= r && val[tmp] == val[tmp - 1]) tmp ++; printf("%d\n", max(Query(tmp, r), tmp - l)); } } }



POJ 3368 Frequent values (基础RMQ)

原文:http://www.cnblogs.com/gccbuaa/p/6707067.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!