首页 > 其他 > 详细

ZOJ 3587 扩展KMP

时间:2017-04-14 20:19:09      阅读:162      评论:0      收藏:0      [点我收藏+]

思路:这题确实大帝做得非常机智!字符串先求最长前缀,反的字符串再求一次最长前缀。然后就能够搞了。

每一个子串出现的次数就是最长前缀的次数嘛!

#pragma comment(linker, "/STACK:1024000000,1024000000")
#include<iostream>
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<map>
#include<queue>
#include<set>
#include<cmath>
#include<bitset>
#define mem(a,b) memset(a,b,sizeof(a))
#define lson i<<1,l,mid
#define rson i<<1|1,mid+1,r
#define llson j<<1,l,mid
#define rrson j<<1|1,mid+1,r
#define INF 0x7fffffff
#define maxn 100005
typedef long long ll;
typedef unsigned long long ull;
using namespace std;
void EKMP(char *s,char *t,ll *next,ll *extend)//s[]为主串,t[]为模版串
{
    int i,j,p,l;
    int len=strlen(t);
    int len1=strlen(s);
    memset(next,0,sizeof(next));
    memset(extend,0,sizeof(extend));
    next[0]=len;
    j=0;
    while(1+j<len&&t[j]==t[1+j])j++;
    next[1]=j;
    int a=1;
    for(i=2; i<len; i++)
    {
        p=next[a]+a-1;
        l=next[i-a];
        if(i+l<p+1)next[i]=l;
        else
        {
            j=max(0,p-i+1);
            while(i+j<len&&t[i+j]==t[0+j])j++;
            next[i]=j;
            a=i;
        }
    }
    j=0;
    while(j<len1&&j<len&&s[j]==t[j])j++;
    extend[0]=j;
    a=0;
    for(i=1; i<len1; i++)
    {
        p=extend[a]+a-1;
        l=next[i-a];
        if(l+i<p+1)extend[i]=next[i-a];
        else
        {
            j=max(0,p-i+1);
            while(i+j<len1&&j<len&&s[i+j]==t[j])j++;
            extend[i]=j;
            a=i;
        }
    }
}
char S[maxn],T[maxn];
ll next[maxn],extend[maxn],sum[maxn],sum1[maxn];
int main()
{
    int t;
    scanf("%d",&t);
    while(t--)
    {
        mem(sum,0);mem(sum1,0);
        scanf("%s%s",S,T);
        EKMP(S,T,next,extend);
        int len1=strlen(S),len2=strlen(T);
        for(int i=0;i<len1;i++)
            sum[extend[i]]++;
        for(int i=len2-1;i>=1;i--)
            sum[i]+=sum[i+1];
        reverse(S,S+len1);
        reverse(T,T+len2);
        EKMP(S,T,next,extend);
        for(int i=0;i<len1;i++)
            sum1[extend[i]]++;
        for(int i=len2-1;i>=1;i--)
            sum1[i]+=sum1[i+1];
        ll ans=0;
        for(int i=1;i<len2;i++)
            ans+=sum[i]*sum1[len2-i];
        printf("%lld\n",ans);
    }
    return 0;
}
/*
2
aaabbb
ab
ababaabaaaab
abaab
*/



ZOJ 3587 扩展KMP

原文:http://www.cnblogs.com/gccbuaa/p/6710693.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!