-
-
-
-
-
-
-
-
-
- import numpy as np
- from sklearn import datasets
- diabetes=datasets.load_diabetes()
- diabetes.data[0]
- np.sum( diabetes.data[:,0]**2)
- diabetes.target
-
- x_train=diabetes.data[:-20]
- y_train=diabetes.target[:-20]
- x_test=diabetes.data[-20:]
- y_test=diabetes.target[-20:]
-
-
-
- from sklearn import linear_model
- linreg=linear_model.LinearRegression()
-
- linreg.fit( x_train,y_train)
- linreg.coef_
-
- linreg.predict( x_test )
-
-
-
-
-
-
- y_test
-
- linreg.score( x_test,y_test)
-
-
- import matplotlib.pyplot as plt
- import matplotlib.font_manager as fm
- myfont = fm.FontProperties(fname=‘/Library/Fonts/Xingkai.ttc‘)
-
-
- plt.figure( figsize=(8,12))
- for f in range(0,10):
-
- xi_test=x_test[:,f]
-
- xi_train=x_train[:,f]
-
-
- xi_test=xi_test[:,np.newaxis]
- xi_train=xi_train[:,np.newaxis]
-
- plt.ylabel(u‘病情数值‘,fontproperties=myfont)
- linreg.fit( xi_train,y_train)
- y=linreg.predict( xi_test )
-
-
- plt.subplot(5,2,f+1)
-
- plt.scatter( xi_test,y_test,color=‘k‘ )
-
- plt.plot(xi_test,y,color=‘b‘,linewidth=3)
-
- plt.savefig(‘python_糖尿病数据集_预测病情_线性回归_最小平方回归.png‘)
- plt.show()
数据挖掘-diabetes数据集分析-糖尿病病情预测_线性回归_最小平方回归
原文:http://www.cnblogs.com/yhl-yh/p/6714950.html