kmean均值算法是一种最常见的聚类算法。算法实现简单,效果也比较好。kmean算法把n个对象划分成指定的k个簇,每个簇中所有对象的均值的平均值为该簇的聚点(中心)。
k均值算法有如下五个步骤:
1 #include <vector> 2 #include <cassert> 3 #include <iostream> 4 #include <cmath> 5 #include <fstream> 6 #include <climits> 7 #include <ctime> 8 #include <iomanip> 9 10 using namespace std; 11 namespace terse { 12 class Kmeans { 13 private: 14 vector<vector<double>> m_dataSet; 15 int m_k; 16 vector<int> m_clusterResult; // result of cluster 17 vector<vector<double>> m_cluserCent; //center of k clusters 18 19 private: 20 vector<string> split(const string& s, string pattern) { 21 vector<string> res; 22 size_t start = 0; 23 size_t end = 0; 24 while (start < s.size()) { 25 end = s.find_first_of(pattern, start); 26 if (end == string::npos) { 27 res.push_back(s.substr(start, end - start - 1)); 28 return res; 29 } 30 res.push_back(s.substr(start, end - start)); 31 start = end + 1; 32 } 33 return res; 34 } 35 36 void loadDataSet(const char* fileName) { 37 ifstream dataFile(fileName); 38 if (!dataFile.is_open()) { 39 cerr << "open file " << fileName << "failed!\n"; 40 return; 41 } 42 string tmpstr; 43 vector<double> data; 44 while (!dataFile.eof()) { 45 data.clear(); 46 tmpstr.clear(); 47 getline(dataFile, tmpstr); 48 vector<string> tmp = split(tmpstr, ","); 49 for (string str : tmp) { 50 data.push_back(stod(str)); 51 } 52 this->m_dataSet.push_back(data); 53 } 54 dataFile.close(); 55 } 56 57 //compute Euclidean distance of two vector 58 double distEclud(vector<double>& v1, vector<double>& v2) { 59 assert(v1.size() == v2.size()); 60 double dist = 0; 61 for (size_t i = 0; i < v1.size(); i++) { 62 dist += (v1[i] - v2[i]) * (v1[i] - v2[i]); 63 } 64 return sqrt(dist); 65 } 66 67 void generateRandCent() { 68 int numOfFeats = this->m_dataSet[0].size(); 69 size_t numOfSamples = this->m_dataSet.size(); 70 71 //first:min second:max 72 vector<pair<double, double>> minMaxOfFeat(numOfFeats); 73 for (int i = 0; i < numOfFeats; i++) { 74 minMaxOfFeat[i].first = this->m_dataSet[0][i]; 75 minMaxOfFeat[i].second = this->m_dataSet[0][i]; 76 } 77 for (size_t i = 1; i < numOfSamples; i++) { 78 for (int j = 0; j < numOfFeats; j++) { 79 if (this->m_dataSet[i][j] > minMaxOfFeat[j].second) { 80 minMaxOfFeat[j].second = this->m_dataSet[i][j]; 81 } 82 if (this->m_dataSet[i][j] < minMaxOfFeat[j].first) { 83 minMaxOfFeat[j].first = this->m_dataSet[i][j]; 84 } 85 } 86 } 87 srand(time(NULL)); 88 for (int i = 0; i < this->m_k; i++) { 89 for (int j = 0; j < numOfFeats; j++) { 90 this->m_cluserCent[i][j] = minMaxOfFeat[j].first 91 + (minMaxOfFeat[j].second - minMaxOfFeat[j].first) 92 * (rand() / (double) RAND_MAX); 93 } 94 } 95 96 } 97 98 void printClusterCent(int iter) { 99 int m = this->m_cluserCent.size(); 100 int n = this->m_cluserCent[0].size(); 101 cout << "iter = " << iter; 102 for (int i = 0; i < m; i++) { 103 cout << " {"; 104 for (int j = 0; j < n; j++) { 105 cout << this->m_cluserCent[i][j] << ","; 106 } 107 cout << "};"; 108 } 109 cout << endl; 110 } 111 112 void writeResult(const char* fileName = "res.txt") { 113 ofstream fout(fileName); 114 if (!fout.is_open()) { 115 cerr << "open file " << fileName << "failed!"; 116 return; 117 } 118 for (size_t i = 0; i < this->m_dataSet.size(); i++) { 119 for (size_t j = 0; j < this->m_dataSet[0].size(); j++) { 120 fout << this->m_dataSet[i][j] << "\t"; 121 } 122 fout << setprecision(5) << this->m_clusterResult[i] << "\n"; 123 } 124 fout.close(); 125 } 126 127 public: 128 Kmeans(int k, const char* fileName) { 129 this->m_k = k; 130 this->loadDataSet(fileName); 131 this->m_clusterResult.reserve(this->m_dataSet.size()); 132 this->m_cluserCent = vector<vector<double>>(k, 133 vector<double>(this->m_dataSet[0].size())); 134 generateRandCent(); 135 } 136 137 Kmeans(int k, vector<vector<double>>& data) { 138 this->m_k = k; 139 this->m_dataSet = data; 140 this->m_clusterResult.reserve(this->m_dataSet.size()); 141 this->m_cluserCent = vector<vector<double>>(k, 142 vector<double>(this->m_dataSet[0].size())); 143 generateRandCent(); 144 } 145 146 //verbose = 1,printClusterCent(); 147 void kmeansCluster(int verbose = 1) { 148 int iter = 0; 149 bool isClusterChanged = true; 150 while (isClusterChanged) { 151 isClusterChanged = false; 152 //step 1: find the nearest centroid of each point 153 int numOfFeats = this->m_dataSet[0].size(); 154 size_t numOfSamples = this->m_dataSet.size(); 155 for (size_t i = 0; i < numOfSamples; i++) { 156 int minIndex = -1; 157 double minDist = INT_MAX; 158 for (int j = 0; j < this->m_k; j++) { 159 double dist = distEclud(this->m_cluserCent[j], 160 m_dataSet[i]); 161 if (dist < minDist) { 162 minDist = dist; 163 minIndex = j; 164 } 165 } 166 if (m_clusterResult[i] != minIndex) { 167 isClusterChanged = true; 168 m_clusterResult[i] = minIndex; 169 } 170 } 171 172 //step 2: update cluster center 173 vector<size_t> cnt(this->m_k, 0); 174 this->m_cluserCent = vector<vector<double>>(this->m_k, 175 vector<double>(numOfFeats, 0.0)); 176 for (size_t i = 0; i < numOfSamples; i++) { 177 for (int j = 0; j < numOfFeats; j++) { 178 this->m_cluserCent[this->m_clusterResult[i]][j] += 179 this->m_dataSet[i][j]; 180 } 181 cnt[this->m_clusterResult[i]]++; 182 } 183 // mean of the vector belong to a cluster 184 for (int i = 0; i < this->m_k; i++) { 185 for (int j = 0; j < numOfFeats; j++) { 186 this->m_cluserCent[i][j] /= cnt[i]; 187 } 188 } 189 if (verbose) 190 printClusterCent(iter++); 191 } 192 writeResult(); 193 } 194 }; 195 196 }; 197 198 int main(){ 199 terse::Kmeans kmeans(4,"datafile.txt"); 200 kmeans.kmeansCluster(); 201 return 0; 202 } 203 /*namespace terse*/
原文:http://www.cnblogs.com/wxquare/p/6754485.html