首页 > 其他 > 详细

4.2 THE COMPLETENESS THEOREM: (2) If A theory $\mathbf{T}$ has a model, then it is consistent.

时间:2014-06-02 06:24:07      阅读:410      评论:0      收藏:0      [点我收藏+]

4.2 THE COMPLETENESS THEOREM

(2) If A theory $\mathbf{T}$ has a model, then it is consistent.

Proof

Suppose that $\mathbf{T}$ has a mode $\mathbf{\alpha}$.

By definition of valid(P19), a formula $\mathbf{A}$ of $\mathbf{L}$ is valid in $\mathbf{\alpha}$ if $\mathbf{\alpha(A‘)=T}$ for every closed formula $\mathbf{A‘}$ of $\mathbf{A}$,we get a closed formula $\mathbf{A \& \neg A}$ of $\mathbf{L}$ is not valid in $\mathbf{\alpha}$ if $\mathbf{\alpha(A \& \neg A)=F}$.

By validity theorem(P23), every theorem of theory T is valid in T, we get if $\mathbf{A \& \neg A}$ is not valid in $\mathbf{\alpha}$, then the formula $\mathbf{A \& \neg A}$ is not theorem.

By definition of consistent(P42), a theory $\mathbf{T}$ is consistent if not every formula of $\mathbf{T}$ is a theorem of $\mathbf{T}$, we get if the formula $\mathbf{A \& \neg A}$ is not theorem, then a theory $\mathbf{T}$ is consistent.

i.e.,

$\mathbf{\alpha(A \& \neg A)=F} \Rightarrow \mathbf{A \& \neg A}$ is not valid in $\mathbf{\alpha}$.

$\mathbf{A \& \neg A}$ is not valid in $\mathbf{\alpha} \Rightarrow \mathbf{A \& \neg A}$ is not theorem.

$\mathbf{A \& \neg A}$ is not theorem $\Rightarrow T$ is consistent.

4.2 THE COMPLETENESS THEOREM: (2) If A theory $\mathbf{T}$ has a model, then it is consistent.,布布扣,bubuko.com

4.2 THE COMPLETENESS THEOREM: (2) If A theory $\mathbf{T}$ has a model, then it is consistent.

原文:http://www.cnblogs.com/mathematicallogic/p/3763695.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!