首页 > 其他 > 详细

3235656

时间:2014-06-02 19:50:39      阅读:437      评论:0      收藏:0      [点我收藏+]

$\bf证明$  由于$\left\{ {{f_n}\left( x \right)} \right\}$几乎处处收敛于$f(x)$,则存在零测集$E_0$,使得$\lim \limits_{n \to \infty } {f_n}\left( x \right) = f\left( x \right)$在$E_1=E\backslash {E_0}$上成立,

于是对任给的$\varepsilon  > 0$,我们有

Ebubuko.com,布布扣1bubuko.com,布布扣=?bubuko.com,布布扣m=1bubuko.com,布布扣bubuko.com,布布扣 ?bubuko.com,布布扣n=mbubuko.com,布布扣bubuko.com,布布扣 Ebubuko.com,布布扣1bubuko.com,布布扣(|fbubuko.com,布布扣nbubuko.com,布布扣?f|<ε)bubuko.com,布布扣

即${E_1} = \mathop {\underline {\lim } }\limits_{n \to \infty } {E_1}\left( {\left| {{f_n} - f} \right| < \varepsilon } \right)$,从而由测度的性质知

m(Ebubuko.com,布布扣1bubuko.com,布布扣)limbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣nbubuko.com,布布扣m(Ebubuko.com,布布扣1bubuko.com,布布扣(|fbubuko.com,布布扣nbubuko.com,布布扣?f|<ε))bubuko.com,布布扣

由$m\left( E \right) < \infty $,我们得到

limbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣ˉbubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣nbubuko.com,布布扣m(Ebubuko.com,布布扣1bubuko.com,布布扣(|fbubuko.com,布布扣nbubuko.com,布布扣?f|ε))=m(Ebubuko.com,布布扣1bubuko.com,布布扣)?limbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣nbubuko.com,布布扣m(Ebubuko.com,布布扣1bubuko.com,布布扣(|fbubuko.com,布布扣nbubuko.com,布布扣?f|<ε))0bubuko.com,布布扣
所以对任给的$\varepsilon  > 0$,我们有$\lim \limits_{n \to \infty } m\left( {{E_1}\left( {\left| {{f_n} - f} \right| \ge \varepsilon } \right)} \right) = 0$

$\bf注1:$设$\left\{ {{E_n}} \right\}$是一列可测集,记$\mathop {\underline {\lim } }\limits_{n \to \infty } {E_n} = \bigcup\limits_{n = 1}^\infty  {\bigcap\limits_{k = n}^\infty  {{E_k}} } $,则

m(limbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣nbubuko.com,布布扣Ebubuko.com,布布扣nbubuko.com,布布扣)limbubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣?bubuko.com,布布扣bubuko.com,布布扣bubuko.com,布布扣nbubuko.com,布布扣m(Ebubuko.com,布布扣nbubuko.com,布布扣)bubuko.com,布布扣

 

3235656,布布扣,bubuko.com

3235656

原文:http://www.cnblogs.com/ly758241/p/3764312.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!