首页 > 其他 > 详细

Transformation(线段树多个lz标记)

时间:2014-06-03 16:13:49      阅读:527      评论:0      收藏:0      [点我收藏+]

这里以3次方来举例讲一下这题的做法,其它维类似。

如果要求某一个值的3次方那么sum = t^3,设t = x+y。那也就是sum = (x+y)^3.

假如我让每个数都加z t = x+y+z,我可以让新的y = y+z,这里发现新来的总会加在y上,那么可以给他一个延迟,slz,

那么新的值t = t + slz,再看如果让每个数都乘k,t = (x+y)*k = xk+yk.可以看出刚才的slz = slz*k; 另外发现系数会跟着变换,可以给他一个延迟,mlz。

那么一个数t = (mlz*x+slz)^3 = mlz^3*x^3+2*mlz^2*slz*x^2+2*mlz*slz^2*x+x^3.

如果求一段这样的和的话,会发现整体就是k1*原本x^3的和+k2*原本x^2的和+k1原本x^1的和 +(r-l+1)*x^3;

这样就可以分别保存3维的和。

 把某一段的值设置为v的时候,可以使mlz =0 slz = v.

bubuko.com,布布扣
  1 #include <iostream>
  2 #include<cstdio>
  3 #include<cstring>
  4 #include<algorithm>
  5 #include<stdlib.h>
  6 #include<vector>
  7 #include<cmath>
  8 #include<queue>
  9 #include<set>
 10 using namespace std;
 11 #define N 100000
 12 #define LL __int64
 13 #define INF 0xfffffff
 14 const double eps = 1e-8;
 15 const double pi = acos(-1.0);
 16 const double inf = ~0u>>2;
 17 const int mod = 10007;
 18 int slz[N<<2],mlz[N<<2];//lz[N<<2];
 19 LL s[N<<2][4];
 20 int p[10100][4];
 21 void init()
 22 {
 23     int i,j;
 24     for(i = 0; i <= 10017 ; i++)
 25     {
 26         p[i][1] = i;
 27         for(j = 2 ; j <= 3 ; j++)
 28         p[i][j] = (p[i][j-1]*i)%mod;
 29     }
 30 }
 31 void up(int w)
 32 {
 33     for(int i = 1; i <= 3 ; i++)
 34     s[w][i] = (s[w<<1][i]+s[w<<1|1][i])%mod;
 35 }
 36 void build(int l,int r,int w)
 37 {
 38     mlz[w] = 1;
 39     slz[w] = 0;
 40     //lz[w] = 0;
 41     if(l==r)
 42     {
 43         for(int i = 1; i <= 3 ; i++)
 44         s[w][i] = 0;
 45         return ;
 46     }
 47     int m = (l+r)>>1;
 48     build(l,m,w<<1);
 49     build(m+1,r,w<<1|1);
 50     up(w);
 51 }
 52 void down(int w,int m)
 53 {
 54     
 55     if(mlz[w]!=1||slz[w]!=0)
 56     {
 57         mlz[w<<1] = (mlz[w<<1]*mlz[w])%mod;
 58         slz[w<<1] = (mlz[w]*slz[w<<1]+slz[w])%mod;
 59         mlz[w<<1|1] = (mlz[w<<1|1]*mlz[w])%mod;
 60         slz[w<<1|1] = (mlz[w]*slz[w<<1|1]+slz[w])%mod;
 61 
 62 
 63         int x1 ,x2,x3,y1,y2,y3;
 64         x1 = mlz[w]; y1 = slz[w];
 65         x2 = p[x1][2]; y2 = p[y1][2];
 66         x3 = p[x1][3]; y3 = p[y1][3];
 67         s[w<<1][3] = (x3*s[w<<1][3]+(3*x2*y1)%mod*s[w<<1][2]+(3*x1*y2)%mod*s[w<<1][1]+y3*(m-m/2))%mod;
 68         s[w<<1|1][3] = (x3*s[w<<1|1][3]+(3*x2*y1)%mod*s[w<<1|1][2]+(3*x1*y2)%mod*s[w<<1|1][1]+y3*(m/2))%mod;
 69         s[w<<1][2] = (x2*s[w<<1][2]+(2*x1*y1)%mod*s[w<<1][1]+y2*(m-m/2))%mod;
 70         s[w<<1|1][2] = (x2*s[w<<1|1][2]+(2*x1*y1)%mod*s[w<<1|1][1]+y2*(m/2))%mod;
 71         s[w<<1][1] = (x1*s[w<<1][1]+y1*(m-m/2))%mod;
 72         s[w<<1|1][1] = (x1*s[w<<1|1][1]+y1*(m/2))%mod;
 73         mlz[w] = 1;
 74         slz[w] = 0;
 75     }
 76 }
 77 void update(int f,int c,int a,int b,int l,int r,int w)
 78 {
 79     if(a<=l&&b>=r)
 80     {
 81         if(f==3)
 82         {
 83 
 84             
 85             mlz[w] = 0;
 86             slz[w] = c;
 87             for(int i = 1; i <= 3 ; i++)
 88             s[w][i] = (p[c][i]*(r-l+1))%mod;
 89 
 90         }
 91         else if(f==1)
 92         {
 93             
 94             slz[w]=(slz[w]+c)%mod;
 95             s[w][3] = ((s[w][3]+3*s[w][2]*c+3*s[w][1]*c*c)%mod+(LL)c*c*c*(r-l+1))%mod;
 96             s[w][2] = ((s[w][2]+2*c*s[w][1])%mod+(LL)c*c*(r-l+1))%mod;
 97             s[w][1] = s[w][1]+c*(r-l+1); s[w][1]%=mod;
 98         }
 99         else if(f==2)
100         {
101             
102                 mlz[w] *= c;mlz[w]%=mod;
103                 slz[w] *= c;slz[w]%=mod;
104            // }
105             //cout<<l<<" "<<r<<" "<<s[w][2]<<endl;
106             s[w][3] = (s[w][3]*c*c*c)%mod;
107             s[w][2] = (s[w][2]*c*c)%mod;
108             s[w][1] = (c*s[w][1])%mod;
109             //cout<<l<<" "<<r<<" "<<s[w][2]<<endl;
110         }
111         return ;
112     }
113     down(w,r-l+1);
114     int m = (l+r)>>1;
115     if(a<=m)
116     update(f,c,a,b,l,m,w<<1);
117     if(b>m) update(f,c,a,b,m+1,r,w<<1|1);
118     up(w);
119 }
120 LL query(int f,int a,int b,int l,int r,int w)
121 {
122     if(a<=l&&b>=r)
123     {
124         return s[w][f];
125     }
126     down(w,r-l+1);
127     int m = (l+r)>>1;
128     LL res=0;
129     if(a<=m) res+=query(f,a,b,l,m,w<<1);
130     res%=mod;
131     if(b>m) res+=query(f,a,b,m+1,r,w<<1|1);
132     res%=mod;
133     return res;
134 }
135 int main()
136 {
137     int n,m,i;
138     int k,x,y,c;
139     init();
140     while(scanf("%d%d",&n,&m)&&n&&m)
141     {
142         build(1,n,1);
143         for(i = 1 ;i <= m; i++)
144         {
145             scanf("%d%d%d%d",&k,&x,&y,&c);
146             if(k<=3)
147                 update(k,c,x,y,1,n,1);
148             else
149                 printf("%I64d\n",(query(c,x,y,1,n,1))%mod);
150         }
151     }
152     return 0;
153 }
View Code

 

 

Transformation(线段树多个lz标记),布布扣,bubuko.com

Transformation(线段树多个lz标记)

原文:http://www.cnblogs.com/shangyu/p/3765165.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!