首页 > 其他 > 详细

多元线性回归(Linear Regression with multiple variables)与最小二乘(least squat)

时间:2014-06-07 01:01:29      阅读:605      评论:0      收藏:0      [点我收藏+]

1.线性回归介绍

 

bubuko.com,布布扣

X指训练数据的feature,beta指待估计得参数。

详细见http://zh.wikipedia.org/wiki/%E4%B8%80%E8%88%AC%E7%BA%BF%E6%80%A7%E6%A8%A1%E5%9E%8B

使用最小二乘法拟合的普通线性回归是数据建模的基本方法。

bubuko.com,布布扣

令最小二乘项的偏导为0(为0时RSS项最小),求Beta估计值,得到最小二乘的向量形式。

bubuko.com,布布扣bubuko.com,布布扣

bubuko.com,布布扣

bubuko.com,布布扣

最小二乘其实就是找出一组参数beta使得训练数据到拟合出的数据的欧式距离最小。如下图所示,使所有红点(训练数据)到平面的距离之和最小。

bubuko.com,布布扣

 

图来源(ESL p45)

最小二乘的几何解释:找到一个投影矩阵,使得y到feature矩阵的线性子空间距离最短。如下图所示

 

 bubuko.com,布布扣

在线性模型中,存在过拟合问题(下图右一):

bubuko.com,布布扣

 

 

所以针对过拟合问题,通常会考虑两种途径来解决:

a) 减少特征的数量:

-人工的选择保留哪些特征;

-模型选择

b) 正则化

-保留所有的特征,但是降低参数θj的量/值;

 

3. 在这里我们介绍正则化方法

主要是岭回归(ridge regression)和lasso回归。通过对最小二乘估计加入惩罚约束,使某些系数的估计非常小或为0。

岭回归在最小化RSS的计算里加入了一个收缩惩罚项(正则化的l2范数)

 

bubuko.com,布布扣

对误差项进行求偏导,令偏导为零得:

bubuko.com,布布扣
Lasso回归

lasso是在RSS最小化的计算中加入一个l1范数作为罚约束:

-bubuko.com,布布扣

 

 

为什么加了惩罚因子就会使得参数变低或零呢?根据拉格朗日乘法算子,这个问题可以转换成一个带约束的求极小值问题。

bubuko.com,布布扣

 

其收敛示意图如下所示,左是Ridge回归,右是lasso回归。黑点表示最小二乘的收敛中心,蓝色区域是加了乘法项的约束,其交点就是用相应regularization得到的系数在系数空间的表示。

 

bubuko.com,布布扣

 

 

 

多元线性回归(Linear Regression with multiple variables)与最小二乘(least squat),布布扣,bubuko.com

多元线性回归(Linear Regression with multiple variables)与最小二乘(least squat)

原文:http://www.cnblogs.com/1234132412343v4/p/3601238.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!