首页 > 其他 > 详细

300. Longest Increasing Subsequence

时间:2017-05-15 23:22:41      阅读:355      评论:0      收藏:0      [点我收藏+]

Problem statement:

Given an unsorted array of integers, find the length of longest increasing subsequence.

For example,
Given [10, 9, 2, 5, 3, 7, 101, 18],
The longest increasing subsequence is [2, 3, 7, 101], therefore the length is 4. Note that there may be more than one LIS combination, it is only necessary for you to return the length.

Your algorithm should run in O(n2) complexity.

Follow up: Could you improve it to O(n log n) time complexity?

Solution:

This is one sequence DP problem. The dp array is one dimension. dp[i] means first i chars in the given string. The return value is not dp[n], it is one max value among dp[0 ... n - 1].

dp[i] = max(dp[i], dp[j] + 1) if nums[i] == nums[j], meanwhile, update the max LIS.

Time complexity is O(n * n).

class Solution {
public:
    int lengthOfLIS(vector<int>& nums) {
        int max_lis = 0;
        int size = nums.size();
        vector<int> lis(size, 1);
        for(int i = 0; i < size; i++){
            for(int j = 0; j < i; j++){
                if(nums[i] > nums[j]){
                    lis[i] = max(lis[i], lis[j] + 1);
                }
            }
            max_lis = max(max_lis, lis[i]);
        }
        return max_lis;
    }
};

300. Longest Increasing Subsequence

原文:http://www.cnblogs.com/wdw828/p/6858867.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!