首页 > 其他 > 详细

2626

时间:2014-06-07 07:11:48      阅读:371      评论:0      收藏:0      [点我收藏+]

$\bf证明$  由于$m\left( {E\left( {{f_n} \nrightarrow f} \right)} \right) = 0$,则我们不妨设$\left\{ {{f_n}\left( x \right)} \right\}$处处收敛于$f(x)$,此时E = \bigcup\limits_{m = 1}^\infty  {\bigcap\limits_{n = m}^\infty  {E\left( {\left| {{f_n} - f} \right| < \frac{1}{k}} \right)} } ,k \in {N_ + }

{B_{m,k}} = \bigcap\limits_{n = m}^\infty  {{E_{n,k}}}  = E\left( {\left| {{f_n} - f} \right| < \frac{1}{k},n \ge m} \right)
其中${E_{n,k}} = E\left( {\left| {{f_n} - f} \right| < \frac{1}{k}} \right)$,则对于固定的$k$,${B_{m,k}}$是单调递增的集合列,并且$E = \bigcup\limits_{m = 1}^\infty  {{B_{m,k}}} $,所以我们有$m\left( E \right) = \lim \limits_{m \to \infty } m\left( {{B_{m,k}}} \right)$,而$m\left( E \right) < \infty $,则对任给$\delta  > 0$,存在${n_k}\left( { > {n_{k - 1}}} \right)$,使得m\left( E \right) - m\left( {{B_{{n_k},k}}} \right) < \frac{\delta }{{{2^k}}}

F = \bigcap\limits_{k = 1}^\infty  {{B_{{n_k},k}}}  = E\left( {\left| {{f_n} - f} \right| < \frac{1}{k},n \ge {n_k}} \right)

则我们有m\left( {E\backslash F} \right) = m\left( {\bigcup\limits_{k = 1}^\infty  {\left( {E\backslash {B_{{n_k},k}}} \right)} } \right) \le \sum\limits_{k = 1}^\infty  {m\left( {E\backslash {B_{{n_k},k}}} \right)}  < \delta

以及对任给的$\varepsilon  > 0$,存在${k_0} > \frac{1}{\varepsilon }$,使得当$n \ge {n_{{k_0}}}$时,对任意的$x \in F$,有\left| {{f_n}\left( x \right) - f\left( x \right)} \right| < \frac{1}{{{k_0}}} < \varepsilon

所以$\left\{ {{f_n}\left( x \right)} \right\}$在$F$上一致收敛于$f(x)$

2626,布布扣,bubuko.com

2626

原文:http://www.cnblogs.com/ly428571/p/3770644.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!