首页 > 其他 > 详细

浮点数的二进制表示

时间:2014-06-20 13:29:33      阅读:450      评论:0      收藏:0      [点我收藏+]

基础知识:

十进制转十六进制;

十六进制转二进制;

IEEE制定的浮点数表示规则;

了解:

目前C/C++编译器标准都遵照IEEE制定的浮点数表示法来进行float,double运算。这种结构是一种科学计数法,用符号、指数和尾数来表示,底数定为2——即把一个浮点数表示为尾数乘以2的指数次方再添上符号。下面是具体的规格:
             
符号位     阶码      尾数     长度
float           1          8        23      32
double          1         11        52      64

 

以下通过几个例子讲解浮点数如何转换为二进制数

例一:

已知:double类型38414.4

求:其对应的二进制表示。

分析:double类型共计64位,折合8字节。由最高到最低位分别是第636261……0位:
    
最高位63位是符号位,1表示该数为负,0表示该数为正;
    62-52
位,一共11位是指数位;
    51-0
位,一共52位是尾数位。

     
步骤:按照IEEE浮点数表示法,下面先把38414.4转换为十六进制数。
     
把整数部和小数部分开处理:整数部直接化十六进制:960E。小数的处理:
0.4=0.5*0+0.25*1+0.125*1+0.0625*0+……
     
实际上这永远算不完!这就是著名的浮点数精度问题。所以直到加上前面的整数部分算够53位就行了。隐藏位技术:最高位的1不写入内存(最终保留下来的还是52位)。
    
如果你够耐心,手工算到53位那么因该是:38414.4(10)=1001011000001110.
0110011001100110011001100110011001100(2)

科学记数法为:1.0010110000011100110011001100110011001100110011001100,右移了15位,所以指数为15。或者可以如下理解:

1.001011000001110 0110011001100110011001100110011001100×2^15
     
于是来看阶码,按IEEE标准一共11位,可以表示范围是-1024 ~ 1023。因为指数可以为负,为了便于计算,规定都先加上1023(2^10-1),在这里,阶码:15+1023=1038。二进制表示为:100 00001110
    
符号位:因为38414.4为正对应 0
    
合在一起(注:尾数二进制最高位的1不要):
01000000 11100010 11000001 110
 01100  11001100  11001100  11001100  11001100

 

例二:

已知:整数3490593(16进制表示为0x354321)

求:其对应的浮点数3490593.0的二进制表示。 

解法如下:

先求出整数3490593的二进制表示:

 H:    3     5    4    3    2     1   (十六进制表示)

 B:   0011  0101 0100 0011 0010  0001 (二进制表示)

        │←─────  21────→│

 

即: 

               1.1010101000011001000012×221

可见,从左算起第一个121位,我们将这21为作为浮点数的小数表示,单精度浮点数float由符号位1位,指数域位k=8位,小数域位(尾数)n=23位构成,因此对上面得到的21位小数位我们还需要补上20,得到浮点数的小数域表示为:

         1 0101 0100 0011 0010 0001 00

 

float类型的偏置量Bias=2k-1-1=28-1-1=127,但还要补上刚才因为右移作为小数部分的21位,因此偏置量为127+21=148,就是IEEE浮点数表示标准:

                          V = (-1)s×M×2E

                    E = e-Bias

中的e,此前计算Bias=127,刚好验证了E=148-127=21

 

148转为二进制表示为10010100,加上符号位0,最后得到二进制浮点数表示1001010010101010000110010000100,其16进制表示为:

 H:     4        A       5          5         0         C         8        4  

 B:  0100   1010   0101    0101   0000   1100  1000   0100

                    |←────      21        ─────→   |

     1|←─8   ─→||←─────       23       ─────→ |

 

这就是浮点数3490593.0(0x4A550C84)的二进制表示。

 

浮点数的二进制表示,布布扣,bubuko.com

浮点数的二进制表示

原文:http://blog.csdn.net/hustyangju/article/details/28597933

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!