首页 > 其他 > 详细

二叉树的遍历

时间:2017-05-20 10:50:24      阅读:301      评论:0      收藏:0      [点我收藏+]

二叉树的遍历

和一般的树不同,二叉树的子结点分为 左孩子 和 右孩子,左孩子、右孩子均有可能为空。

也就是说,二叉树上结点的子结点之间是有序的。

正因如此,在二叉树中,除了深度优先搜索和广度优先搜索以外,还有几种特殊的遍历方法:先序遍历、中序遍历和后序遍历。

先序遍历是指,在对二叉树进行遍历时,先访问当前子树的根结点,再依次访问左子树和右子树。

C++ 示例代码如下:

int lch[MAX_N], rch[MAX_N];

void preorder(int u) {
    cout << "visiting " << u << endl;
    if (lch[u]) {
        preorder(lch[u]);
    }
    if (rch[u]) {
        preorder(rch[u]);
    }
}
 

中序遍历是指在对二叉树进行遍历时,先访问当前子树的左子树,再访问当前子树的根结点,最后访问当前子树的右子树。

C++ 示例代码如下:

int lch[MAX_N], rch[MAX_N];
void preorder(int u) {
    if (lch[u]) {
        preorder(lch[u]);
    }
    cout << "visiting " << u << endl;
    if (rch[u]) {
        preorder(rch[u]);
    }
}
 

后序遍历是指在对二叉树进行遍历时,先依次访问当前子树的左右子树,最后访问当前子树的根结点。

C++ 示例代码如下:

int lch[MAX_N], rch[MAX_N];

void preorder(int u) {
    if (lch[u]) {
        preorder(lch[u]);
    }
    if (rch[u]) {
        preorder(rch[u]);
    }
    cout << "visiting " << u << endl;
}

 

二叉树的遍历

原文:http://www.cnblogs.com/wangkaipeng/p/6881550.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!