其实init进程启动后,ServiceManager进程的启动,远比zygote要早,因为在启动zygote进程时需要用到ServiceManager进程的服务。ServiceManager是一个守护进程,它维护着系统服务和客户端的binder通信。
在Android系统中用到最多的通信机制就是Binder,Binder主要由Client、Server、ServiceManager和Binder驱动程序组成。其中Client、Service和ServiceManager运行在用户空间,而Binder驱动程序运行在内核空间。核心组件就是Binder驱动程序了,而ServiceManager提供辅助管理的功能,无论是Client还是Service进行通信前首先要和ServiceManager取得联系。而ServiceManager是一个守护进程,负责管理Server并向Client提供查询Server的功能。
service servicemanager /system/bin/servicemanager class core user system group system critical onrestart restart zygote onrestart restart media onrestart restart surfaceflinger onrestart restart drm
int main(int argc, char **argv) { struct binder_state *bs; //宏:#define BINDER_SERVICE_MANAGER ((void*)0)。表示ServiceManager对应的句柄为0,表面自己是服务器管理者。其他的Server进程句柄值都是大于0的。 void *svcmgr = BINDER_SERVICE_MANAGER; //打开Binder设备,映射128K的内存地址空间 bs = binder_open(128*1024); //告诉Binder驱动程序自己是Binder上下文管理者 if (binder_become_context_manager(bs)) { ALOGE("cannot become context manager (%s)\n", strerror(errno)); return -1; } //ServiceManager对应的句柄赋值 svcmgr_handle = svcmgr; //进入一个无线循环,充当server角色,等待Client的请求 binder_loop(bs, svcmgr_handler); return 0; }
struct binder_state { int fd; // 文件描述符,打开的/dev/binder设备 void* mapped; // 把设备文件/dev/binder映射到进程空间的起始地址 unsigned mapsize; // 映射内存空间的大小 };这个结构体也是在Binder.c中定义的。binder_open(unsigned mapsize)函数代码如下:
struct binder_state *binder_open(unsigned mapsize) { struct binder_state *bs; bs = malloc(sizeof(*bs)); if (!bs) { errno = ENOMEM; return 0; } //打开/dev/binder驱动文件 bs->fd = open("/dev/binder", O_RDWR); if (bs->fd < 0) { fprintf(stderr,"binder: cannot open device (%s)\n", strerror(errno)); goto fail_open; } //设置要映射的空间大小128*1024 bs->mapsize = mapsize; //开始映射 bs->mapped = mmap(NULL, mapsize, PROT_READ, MAP_PRIVATE, bs->fd, 0); if (bs->mapped == MAP_FAILED) { fprintf(stderr,"binder: cannot map device (%s)\n", strerror(errno)); goto fail_map; } /* TODO: check version */ return bs; fail_map: close(bs->fd); fail_open: free(bs); return 0; }
参数mapsize表示它希望把binder驱动文件的多少字节映射到本地空间。可以看到,Service Manager Service和普通进程所映射的binder大小并不相同。它把binder驱动文件的128K字节映射到内存空间,而普通进程则会映射binder文件里的BINDER_VM_SIZE(即1M减去8K)字节。具体的映射动作由mmap()一句完成,该函数将binder驱动文件的一部分映射到进程空间。mmap()的函数原型如下:
void* mmap ( void * addr , size_t len , int prot , int flags , int fd , off_t offset );
参数addr用于指出文件应被映射到进程空间的起始地址,一般指定为空指针,此时会由内核来决定起始地址。
参数len为映射的字节长度。参数offset是偏移量的起始位置。
此函数作用是让当前进程成为整个系统中唯一的上下文管理器,即 service管理器。其代码非常简单,仅仅是把BINDER_SET_CONTEXT_MGR发送到binder驱动而已。源码如下:
int binder_become_context_manager(struct binder_state *bs) { return ioctl(bs->fd, BINDER_SET_CONTEXT_MGR, 0); }
binder_loop(struct binder_state *bs, binder_handler func)函数源码位置在frameworks/base/cmds/servicemanager/Binder.c。此时已经正式进入循环,转正为一个server。注意这个函数的参数:bs是文件/dev/binder的描述符,func是函数svcmgr_handler。
void binder_loop(struct binder_state *bs, binder_handler func) { int res; struct binder_write_read bwr; unsigned readbuf[32]; bwr.write_size = 0; bwr.write_consumed = 0; bwr.write_buffer = 0; readbuf[0] = BC_ENTER_LOOPER; binder_write(bs, readbuf, sizeof(unsigned)); for (;;) { bwr.read_size = sizeof(readbuf); bwr.read_consumed = 0; bwr.read_buffer = (unsigned) readbuf; //通过设备描述符,将数据发给binder驱动 res = ioctl(bs->fd, BINDER_WRITE_READ, &bwr); if (res < 0) { ALOGE("binder_loop: ioctl failed (%s)\n", strerror(errno)); break; } //解析驱动的数据,调用回调函数func res = binder_parse(bs, 0, readbuf, bwr.read_consumed, func); if (res == 0) { ALOGE("binder_loop: unexpected reply?!\n"); break; } if (res < 0) { ALOGE("binder_loop: io error %d %s\n", res, strerror(errno)); break; } } }
这个函数源码位置在frameworks/base/cmds/servicemanager/Binder.c
这个函数主要是对binder文件解析并执行相应的指令。这个函数的大头其实就是那个一路传过来的svcmgr_handler函数,就是那个参数func。
int binder_parse(struct binder_state *bs, struct binder_io *bio, uint32_t *ptr, uint32_t size, binder_handler func) { int r = 1; uint32_t *end = ptr + (size / 4); while (ptr < end) { uint32_t cmd = *ptr++; ... //注意这个BR_TRANSACTION case BR_TRANSACTION: { struct binder_txn *txn = (void *) ptr; if ((end - ptr) * sizeof(uint32_t) < sizeof(struct binder_txn)) { ALOGE("parse: txn too small!\n"); return -1; } binder_dump_txn(txn); if (func) { unsigned rdata[256/4]; struct binder_io msg; struct binder_io reply; int res; bio_init(&reply, rdata, sizeof(rdata), 4); bio_init_from_txn(&msg, txn); res = func(bs, txn, &msg, &reply); binder_send_reply(bs, &reply, txn->data, res); } ptr += sizeof(*txn) / sizeof(uint32_t); break; } ... } return r; }
这个函数源码位置在frameworks/base/cmds/servicemanager/service_manager.c
int svcmgr_handler(struct binder_state *bs, struct binder_txn *txn, struct binder_io *msg, struct binder_io *reply) { ... switch(txn->code) { //客户端获取服务的请求 case SVC_MGR_GET_SERVICE: case SVC_MGR_CHECK_SERVICE: s = bio_get_string16(msg, &len); ptr = do_find_service(bs, s, len, txn->sender_euid); if (!ptr) break; bio_put_ref(reply, ptr); return 0; //服务端请求添加服务 case SVC_MGR_ADD_SERVICE: s = bio_get_string16(msg, &len); ptr = bio_get_ref(msg); allow_isolated = bio_get_uint32(msg) ? 1 : 0; if (do_add_service(bs, s, len, ptr, txn->sender_euid, allow_isolated)) return -1; break; ... } bio_put_uint32(reply, 0); return 0; }
service_manager.c中声明了一个链表svclist
struct svcinfo *svclist = 0;
svclist记录着所有添加进系统的“service代理”信息,这些信息被组织成一条单向链表。svclist链表节点类型为svcinfo,如下:
struct svcinfo { struct svcinfo *next; void *ptr;//记录的就是系统service对应的 binder句柄值 struct binder_death death; int allow_isolated; unsigned len; uint16_t name[0];//系统服务的名称 };
当应用调用getService()获取系统服务的代理接口时,servicemanager就会搜索这张svclist链表,下面就要介绍。
这个函数源码位置在frameworks/base/cmds/servicemanager/service_manager.c
int do_add_service(struct binder_state *bs, uint16_t *s, unsigned len, void *ptr, unsigned uid, int allow_isolated) { struct svcinfo *si; //ALOGI("add_service('%s',%p,%s) uid=%d\n", str8(s), ptr, // allow_isolated ? "allow_isolated" : "!allow_isolated", uid); if (!ptr || (len == 0) || (len > 127)) return -1; //查看该服务是否有注册权限 if (!svc_can_register(uid, s)) { ALOGE("add_service('%s',%p) uid=%d - PERMISSION DENIED\n", str8(s), ptr, uid); return -1; } //在服务列表中查找服务 si = find_svc(s, len); //查看该服务是否已经注册 if (si) { if (si->ptr) { ALOGE("add_service('%s',%p) uid=%d - ALREADY REGISTERED, OVERRIDE\n", str8(s), ptr, uid); svcinfo_death(bs, si); } si->ptr = ptr; } else { //如果没有注册,则创建一个,并添加到svclist服务列表的表首。 si = malloc(sizeof(*si) + (len + 1) * sizeof(uint16_t)); if (!si) { ALOGE("add_service('%s',%p) uid=%d - OUT OF MEMORY\n", str8(s), ptr, uid); return -1; } si->ptr = ptr; si->len = len; memcpy(si->name, s, (len + 1) * sizeof(uint16_t)); si->name[len] = '\0'; si->death.func = svcinfo_death; si->death.ptr = si; si->allow_isolated = allow_isolated; si->next = svclist; svclist = si; } //通知binder设备有一个service注册进来。 binder_acquire(bs, ptr); binder_link_to_death(bs, ptr, &si->death); return 0; }
这个函数源码位置在frameworks/base/cmds/servicemanager/service_manager.c
void *do_find_service(struct binder_state *bs, uint16_t *s, unsigned len, unsigned uid) { struct svcinfo *si; //上一个函数也调用了这个函数 si = find_svc(s, len); // ALOGI("check_service('%s') ptr = %p\n", str8(s), si ? si->ptr : 0); if (si && si->ptr) { if (!si->allow_isolated) { // If this service doesn't allow access from isolated processes, // then check the uid to see if it is isolated. unsigned appid = uid % AID_USER; if (appid >= AID_ISOLATED_START && appid <= AID_ISOLATED_END) { return 0; } } return si->ptr; } else { return 0; }
这个函数源码位置在frameworks/base/cmds/servicemanager/service_manager.c
struct svcinfo *find_svc(uint16_t *s16, unsigned len) { struct svcinfo *si; //遍历svclist,查找服务 for (si = svclist; si; si = si->next) { if ((len == si->len) && !memcmp(s16, si->name, len * sizeof(uint16_t))) { return si; } } return 0; }
守护进程servicemanager循环从binder设备文件读取数据,然后解析并响应请求,包括服务端的添加服务请求和客户端的查询,获取服务的请求。
android启动之ServiceManager启动,布布扣,bubuko.com
原文:http://blog.csdn.net/w2865673691/article/details/26724701