1.本地LOCAL环境安装Spark并试运行配置(在Ubuntu系统下例子)
# 打开文件配置环境变量: JAVA,SCALA,SPARK,HADOOP,SBT gedit /etc/profile # 在文件中加入以下行 export JAVA_HOME=/usr/java/jdk1.8.0_51 export PATH=$JAVA_HOME/bin: $PATH export CLASSPATH= $CLASSPATH :$JAVA_HOME/lib/dt.jar:$JAVA_HOME/lib/tools.jar export SCALA_HOME=/usr/scala/scala-2.11.7 export PATH=$SCALA_HOME/bin: $PATH export SPARK_HOME=/usr/spark/spark-1.4.1 -bin -without -hadoop export PATH=$SPARK_HOME/bin: $PATH export SBT_HOME=/usr/scala/sbt export PATH=$SBT_HOME/bin: $PATH export HADOOP_HOME=/usr/hadoop/hadoop-2.7.0 export PATH=$HADOOP_HOME/bin: $PATH export CLASSPATH= $CLASSPATH :$HADOOP_HOME/lib # 更新系统文件 source /etc/profile |
修改 Spark的配置文件 Spark-env.sh,将Spark-env.sh.template 文件修改名称并添加以下环境变量和类变量
export SCALA_HOME=/usr/scala/scala-2.11.7 export JAVA_HOME=/usr/java/jdk1.8.0_51 export HADOOP_CONF_DIR=/usr/hadoop/hadoop-2.7.0/etc/hadoop export SPARK_LOCAL_IP=localhost export SPARK_PUBLIC_DNS=localhost export SPARK_CLASSPATH=${HADOOP_HOME}/share/hadoop/common/hadoop -common -2.7.0.jar:${HADOOP_HOME}/share/hadoop/common/hadoop -nfs -2.7.0.jar export SPARK_CLASSPATH=${SPARK_CLASSPATH}:${HADOOP_HOME}/share/hadoop/common/lib/slf4j-log4j12-1.7.10.jar:${HADOOP_HOME}/share/hadoop/common/lib/slf4j -api -1.7.10.jar:${HADOOP_HOME}/share/hadoop/common/lib/log4j-1.2.17.jar:${HADOOP_HOME}/share/hadoop/common/lib/commons -configuration -1.6.jar:${HADOOP_HOME}/share/hadoop/common/lib/commons -collections -3.2.1.jar:${HADOOP_HOME}/share/hadoop/common/lib/guava-11.0.2.jar:${HADOOP_HOME}/share/hadoop/common/lib/commons -lang -2.6.jar:${HADOOP_HOME}/share/hadoop/common/lib/hadoop -auth -2.7.0.jar:${HADOOP_HOME}/share/hadoop/common/lib/jetty-6.1.26.jar export SPARK_CLASSPATH=${SPARK_CLASSPATH}:${HADOOP_HOME}/share/hadoop/common/lib/jersey -server -1.9.jar:${HADOOP_HOME}/share/hadoop/common/lib/jersey -core -1.9.jar:${HADOOP_HOME}/share/hadoop/common/lib/jersey -json -1.9.jar:${HADOOP_HOME}/share/hadoop/common/lib/snappy -java -1.0.4.1.jar export SPARK_CLASSPATH=${SPARK_CLASSPATH}:${HADOOP_HOME}/share/hadoop/mapreduce/hadoop -mapreduce -client -common -2.7.0.jar export SPARK_CLASSPATH=${SPARK_CLASSPATH}:${SPARK_HOME}/lib/spark -assembly -1.4.1-hadoop2.2.0.jar:${SPARK_HOME}/lib/spark-1.4.1 -yarn -shuffle .jar:${SPARK_HOME}/lib/spark -examples -1.4.1-hadoop2.2.0.jar |
当执行./bin/spark-shell 命令行后,出现以下界面代表本地模式成功启动了Spark
2.R执行Spark命令处理文件
library(SparkR) # 新建一个SparkContent sc <- sparkR.init(master= "local" ) |