题意:给定正方体12条棱的颜色,要求用这些棱能组成多少不同的正方体
思路:利用ploya定理去求解,分类讨论,正方体一共24种旋转。相应的旋转方式有4种:
1、不动
2、沿两面中点连线旋转
3、沿对顶点连线旋转
4、沿两棱中点连线旋转
简单推算出每种情况相应的循环组数。在加上组合数学去进行选择颜色求解。注意第4种情况中,有两条棱和其它的循环长度是不同的,能够枚举然后扣掉讨论。
代码:
#include <stdio.h> #include <string.h> int t, color[6], save[6], c[13][13]; long long solve(int k) { long long sum = 0, ans = 1; for (int i = 0; i < 6; i++) { if (save[i] % k) return 0; save[i] /= k; sum += save[i]; } for (int i = 0; i < 6; i++) { ans *= c[sum][save[i]]; sum -= save[i]; } return ans; } long long solve1() { memcpy(save, color, sizeof(save)); return solve(1); } long long solve2() { memcpy(save, color, sizeof(save)); long long ans = 6 * solve(4); memcpy(save, color, sizeof(save)); return ans + 3 * solve(2); } long long solve3() { memcpy(save, color, sizeof(save)); return 8 * solve(3); } long long solve4() { long long ans = 0; for (int i = 0; i < 6; i++) { for (int j = 0; j < 6; j++) { memcpy(save, color, sizeof(save)); save[i]--; save[j]--; if (save[i] < 0 || save[j] < 0) continue; ans += 6 * solve(2); } } return ans; } int main() { for (int i = 0; i <= 12; i++) { c[i][0] = c[i][i] = 1; for (int j = 1; j < i; j++) c[i][j] = c[i - 1][j - 1] + c[i - 1][j]; } scanf("%d", &t); while (t--) { int col; memset(color, 0, sizeof(color)); for (int i = 0; i < 12; i++) { scanf("%d", &col); color[col - 1]++; } printf("%lld\n", (solve1() + solve2() + solve3() + solve4()) / 24); } return 0; }
原文:http://www.cnblogs.com/wzzkaifa/p/6897858.html