以 去掉多少个 为阶段不好做。
去掉 k 个也可以变成选 n - k 个
f[i][j] 表示前 i 个数中 选 j 个的最优解,a[i] 必选
f[i][j] = min(f[i][j], f[k][j - 1] + abs(b[k] - b[i])) (2 <= j <= min(i, n - m), j - 1 <= k < i)
——代码
1 #include <cstdio> 2 #include <cstring> 3 #include <iostream> 4 #include <algorithm> 5 6 const int MAXN = 101, INF = ~(1 << 31); 7 int n, m, ans = INF; 8 int f[MAXN][MAXN]; 9 10 struct node 11 { 12 int a, b; 13 }p[MAXN]; 14 15 inline int read() 16 { 17 int x = 0, f = 1; 18 char ch = getchar(); 19 for(; !isdigit(ch); ch = getchar()) if(ch == ‘-‘) f = -1; 20 for(; isdigit(ch); ch = getchar()) x = (x << 1) + (x << 3) + ch - ‘0‘; 21 return x * f; 22 } 23 24 inline bool cmp(node x, node y) 25 { 26 return x.a < y.a; 27 } 28 29 inline int min(int x, int y) 30 { 31 return x < y ? x : y; 32 } 33 34 inline int abs(int x) 35 { 36 return x < 0 ? -x : x; 37 } 38 39 int main() 40 { 41 int i, j, k; 42 n = read(); 43 m = n - read(); 44 for(i = 1; i <= n; i++) p[i].a = read(), p[i].b = read(); 45 std::sort(p + 1, p + n + 1, cmp); 46 for(i = 2; i <= n; i++) 47 for(j = 2; j <= min(i, m); j++) 48 { 49 f[i][j] = INF; 50 for(k = j - 1; k < i; k++) 51 f[i][j] = min(f[i][j], f[k][j - 1] + abs(p[k].b - p[i].b)); 52 } 53 for(i = m; i <= n; i++) ans = min(ans, f[i][m]); 54 printf("%d\n", ans); 55 return 0; 56 }
原文:http://www.cnblogs.com/zhenghaotian/p/6899514.html