Triangle, square, pentagonal, hexagonal, heptagonal, and octagonal numbers are all figurate (polygonal) numbers and are generated by the following formulae:
Triangle | P3,n=n(n+1)/2 | 1, 3, 6, 10, 15, ... | ||
Square | P4,n=n2 | 1, 4, 9, 16, 25, ... | ||
Pentagonal | P5,n=n(3n?1)/2 | 1, 5, 12, 22, 35, ... | ||
Hexagonal | P6,n=n(2n?1) | 1, 6, 15, 28, 45, ... | ||
Heptagonal | P7,n=n(5n?3)/2 | 1, 7, 18, 34, 55, ... | ||
Octagonal | P8,n=n(3n?2) | 1, 8, 21, 40, 65, ... |
The ordered set of three 4-digit numbers: 8128, 2882, 8281, has three interesting properties.
Find the sum of the only ordered set of six cyclic 4-digit numbers for which each polygonal type: triangle, square, pentagonal, hexagonal, heptagonal, and octagonal, is represented by a different number in the set.
又暴力破解了一次ㄟ( ▔, ▔ )ㄏ
一開始没看清题意,我以为这些数依次是满足triangle, square, pentagonal, hexagonal, heptagonal, and octagonal。结果发现无解┑( ̄Д  ̄)┍
#include <iostream> #include <string> #include <vector> #include <unordered_map> #include <time.h> using namespace std; int triangle[100]; int pentagonal[10000]; int hextagonal[10000]; int heptagonal[10000]; int octagonal[10000]; int tri_count = 0; void getTriangle() { int count = 0; for (int i = 1; i <= 200; i++) { int num = i*(i + 1) / 2; if (num >1000&&num<10000) triangle[count++] = num; } tri_count = count; } bool isSqure(int n) { int i = sqrt(n); if (i*i == n&&n>1000&&n<10000) return true; return false; } void getPentagonal() { for (int i = 1; i <= 200; i++) { int num = i*(3 * i - 1) / 2; if (num > 1000 && num < 10000) pentagonal[num] = 1; } } bool isPentagonal(int n) { if (pentagonal[n] == 1) return true; return false; } void getHexagonal() { for (int i = 1; i <= 200; i++) { int num = i*(2 * i - 1); if (num>1000 && num < 10000) hextagonal[num] = 1; } } bool isHexagonal(int n) { if (hextagonal[n] == 1) return true; return false; } void getHeptagonal() { for (int i = 1; i <= 200; i++) { int num = i*(5 * i - 3) / 2; if (num > 1000 && num < 10000) heptagonal[num] = 1; } } bool isHeptagonal(int n) { if (heptagonal[n] == 1) return true; return false; } void getOctagonal() { for (int i = 1; i <= 200; i++) { int num = i*(3 * i - 2); if (num > 1000 && num < 10000) octagonal[num] = 1; } } bool isOctagonal(int n) { if (octagonal[n] == 1) return true; return false; } bool(*figurate[5])(int) = { isSqure, isPentagonal, isHexagonal, isHeptagonal, isOctagonal }; vector<int> GetRandomSequence() { unordered_map<int, int>tab; vector<int>res; int num; for (int i = 0; i < 5; i++) { do{ num = rand() % 5; } while (tab.find(num) != tab.end()); tab.insert(make_pair(num, 1)); res.push_back(num); } return res; } int check() { int sum = 0; srand((int)time(0)); vector<int>rs = GetRandomSequence(); for (int i = 0; i < tri_count; i++) { int a = triangle[i] / 100; int b = triangle[i] % 100; for (int s = 10; s <= 99; s++) { if ((*figurate[rs[0]])(b * 100 + s)) { for (int p = 10; p <= 99; p++) { if ((*figurate[rs[1]])(s * 100 + p)) { for (int hx = 10; hx <= 99; hx++) { if ((*figurate[rs[2]])(p * 100 + hx)) { for (int hp = 10; hp <= 99; hp++) { if ((*figurate[rs[3]])(hx * 100 + hp)) { if ((*figurate[rs[4]])(hp * 100 + a)) { sum = triangle[i] + b * 100 + s + s * 100 + p + p * 100 + hx + hx * 100 + hp + hp * 100 + a; return sum; } } } } } } } } } } return -1; } int main() { memset(pentagonal, 0, sizeof(pentagonal)); memset(hextagonal, 0, sizeof(hextagonal)); memset(heptagonal, 0, sizeof(heptagonal)); memset(octagonal, 0, sizeof(octagonal)); getTriangle(); getPentagonal(); getHexagonal(); getHeptagonal(); getOctagonal(); int flag; while (true) { flag = check(); if (flag != -1) break; } cout << flag << endl; system("pause"); return 0; }
Project Euler:Problem 61 Cyclical figurate numbers
原文:http://www.cnblogs.com/yxysuanfa/p/6901927.html