这两个数组都是无序的。
比如:
输入: arr1[] = {11, 1, 13, 21, 3, 7}, arr2[] = {11, 3, 7, 1}
输出: arr2是arr1的子集。
输入: arr1[] = {1, 2, 3, 4, 5, 6}, arr2[] = {1, 2, 4}
输出: arr2是arr1的子集。
输入: arr1[] = {10, 5, 2, 23, 19}, arr2[] = {19, 5, 3}
输出: arr2不是arr1的子集,由于arr2中的元素3,不存在于arr1中。
内层的循环逐个的取元素与外层传入的元素进行比較。假设全部元素都匹配成功。则返回1,否则返回0。
#include<iostream>
//假设arr2是arr1的子集,则返回1.
bool isSubset(int arr1[], int arr2[], int numArr1, int numArr2)
{
int i = 0;
int j = 0;
for (i = 0; i < numArr2; i++)
{
for (j = 0; j < numArr1; j++)
{
if (arr2[i] == arr1[j])
break;
}
//假设上面的内层循环没有break, 则说明arr2不是arr1的子集
if (j == numArr1)
return 0;
}
//假设运行到这里,说明arr2是arr1的子集
return 1;
}
int main()
{
int arr1[] = { 11, 1, 13, 21, 3, 7 };
int arr2[] = { 11, 3, 7, 1 };
int numArr1 = sizeof(arr1) / sizeof(arr1[0]);
int numArr2 = sizeof(arr2) / sizeof(arr2[0]);
if (isSubset(arr1, arr2, numArr1, numArr2))
std::cout<<"arr2[] is subset of arr1[]";
else
std::cout<<"arr2[] is not a subset of arr1[]";
return 0;
}时间复杂度:
O(m*n)#include <iostream> //函数声明 。时间复杂度: O(mLogm + nLogm). 当中,mLogm是排序算法的平均复杂度。由于上面用的是高速排序,假设是最坏情况,则复杂度会变为O(m^2)。两个辅助函数,用于推断子集。
void quickSort(int *arr, int si, int ei); int binarySearch(int arr[], int low, int high, int x); // 假设arr2[]是arr1[]的一个子集,则返回1 bool isSubset(int arr1[], int arr2[], int numArr1, int numArr2) { int i = 0; quickSort(arr1, 0, numArr1-1); for (i=0; i<numArr2; i++) { if (binarySearch(arr1, 0, numArr1-1, arr2[i]) == -1) return 0; } //假设运行到了这里。说明arr2是arr1的子集 return 1; } //---------辅助函数begin-------- //标准的二分查找函数 int binarySearch(int arr[], int low, int high, int x) { if(high >= low) { int mid = (low + high)/2; //或者low + (high - low)/2; /* * 检測arr[mid]是否为第一次遇到x。 * 当x满足以下情况的一种时,则证明是第一次遇到x: (1) (mid == 0) && (arr[mid] == x) (2) (arr[mid-1] < x) && (arr[mid] == x) */ if(( mid == 0 || arr[mid-1] < x) && (arr[mid] == x)) return mid; else if(x > arr[mid]) return binarySearch(arr, (mid + 1), high, x); else return binarySearch(arr, low, (mid -1), x); } return -1; } template<typename type> void exchange(type *a, type *b) { type temp; temp = *a; *a = *b; *b = temp; } int partition(int A[], int si, int ei) { int x = A[ei]; int i = (si - 1); int j; for (j = si; j <= ei - 1; j++) { if(A[j] <= x) { i++; exchange(&A[i], &A[j]); } } exchange (&A[i + 1], &A[ei]); return (i + 1); } /* 实现高速排序的函数 A[]:须要排序的数组 si:Starting index ei:Ending index */ void quickSort(int A[], int si, int ei) { int pi; //Partitioning index if(si < ei) { pi = partition(A, si, ei); quickSort(A, si, pi - 1); quickSort(A, pi + 1, ei); } } //---------辅助函数end-------- int main() { int arr1[] = {11, 1, 13, 21, 3, 7}; int arr2[] = {11, 3, 7, 1}; int numArr1 = sizeof(arr1)/sizeof(arr1[0]); int numArr2 = sizeof(arr2)/sizeof(arr2[0]); if(isSubset(arr1, arr2, numArr1, numArr2)) std::cout<<"arr2[] is subset of arr1[]"; else std::cout<<"arr2[] is not a subset of arr1[]"; return 0; }
O(mLogm + nLogn)
2) 使用归并流程来检測已排好序的数组arr2是否存在于排好序的arr1中。
//假设arr2是arr1的子集。则返回1
bool isSubset(int arr1[], int arr2[], int m, int n)
{
int i = 0, j = 0;
if(m < n)
return 0;
quickSort(arr1, 0, m-1);
quickSort(arr2, 0, n-1);
while( i < n && j < m )
{
if( arr1[j] <arr2[i] )
j++;
else if( arr1[j] == arr2[i] )
{
j++;
i++;
}
else if( arr1[j] > arr2[i] )
return 0;
}
if( i < n )
return 0;
else
return 1;
}时间复杂度: O(mLogm + nLogn) 。例如法2要好。
原文:http://www.cnblogs.com/cxchanpin/p/6925222.html