1. 递归解法
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: vector<int> path; void preorder(TreeNode *root) { if (root == NULL) return; path.push_back(root->val); preorder(root->left); preorder(root->right); } vector<int> preorderTraversal(TreeNode *root) { preorder(root); return path; } };
2. 非递归解法一(空间复杂度O(n))
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: vector<int> preorderTraversal(TreeNode *root) { vector<int> path; path.clear(); stack<TreeNode *> st; if (root == NULL) return path; st.push(root); while (!st.empty()) { TreeNode *node = st.top(); st.pop(); path.push_back(node->val); if (node->right != NULL) st.push(node->right); if (node->left != NULL) st.push(node->left); } return path; } };
3. 非递归解法(空间复杂度O(1))
/** * Definition for binary tree * struct TreeNode { * int val; * TreeNode *left; * TreeNode *right; * TreeNode(int x) : val(x), left(NULL), right(NULL) {} * }; */ class Solution { public: vector<int> preorderTraversal(TreeNode *root) { vector<int> path; if (root == NULL) return path; TreeNode *cur = root; TreeNode *pre = NULL; while (cur != NULL) { if (cur->left == NULL) { path.push_back(cur->val); cur = cur->right; } else { pre = cur->left; while (pre->right != NULL && pre->right != cur) pre = pre->right; if (pre->right == NULL) { pre->right = cur; path.push_back(cur->val); cur = cur->left; } else { pre->right = NULL; cur = cur->right; } } } return path; } };
Binary Tree Preorder Traversal,布布扣,bubuko.com
Binary Tree Preorder Traversal
原文:http://blog.csdn.net/hevc_cjl/article/details/28679187