序列分类,预测整个输入序列的类别标签。情绪分析,预测用户撰写文字话题态度。预测选举结果或产品、电影评分。
国际电影数据库(International Movie Database)影评数据集。目标值二元,正面或负面。语言大量否定、反语、模糊,不能只看单词是否出现。构建词向量循环网络,逐个单词查看每条评论,最后单词话性值训练预测整条评论情绪分类器。
斯担福大学人工智能实验室的IMDB影评数据集: http://ai.stanford.edu/~amaas/data/sentiment/ 。压缩tar文档,正面负面评论从两个文件夹文本文件获取。利用正则表达式提取纯文本,字母全部转小写。
词向量嵌入表示,比独热编码词语语义更丰富。词汇表确定单词索引,找到正确词向量。序列填充相同长度,多个影评数据批量送入网络。
序列标注模型,传入两个占位符,一输入数据data或序列,二目标值target或情绪。传入配置参数params对象,优化器。
动态计算当前批数据序列长度。数据单个张量形式,各序列以最长影评长度补0。绝对值最大值缩减词向量。零向量,标量0。实型词向量,标量大于0实数。tf.sign()离散为0或1。结果沿时间步相加,得到序列长度。张量长度与批数据容量相同,标量表示序列长度。
使用params对象定义单元类型和单元数量。length属性指定向RNN提供批数据最多行数。获取每个序列最后活性值,送入softmax层。因每条影评长度不同,批数据每个序列RNN最后相关输出活性值有不同索引。在时间步维度(批数据形状sequences*time_steps*word_vectors)建立索引。tf.gather()沿第1维建立索引。输出活性值形状sequences*time_steps*word_vectors前两维扁平化(flatten),添加序列长度。添加length-1,选择最后有效时间步。
梯度裁剪,梯度值限制在合理范围内。可用任何中分类有意义代价函数,模型输出可用所有类别概率分布。增加梯度裁剪(gradient clipping)改善学习结果,限制最大权值更新。RNN训练难度大,不同超参数搭配不当,权值极易发散。
TensorFlow支持优化器实例compute_gradients函数推演,修改梯度,apply_gradients函数应用权值变化。梯度分量小于-limit,设置-limit;梯度分量在于limit,设置limit。TensorFlow导数可取None,表示某个变量与代价函数没有关系,数学上应为零向量但None利于内部性能优化,只需传回None值。
影评逐个单词送入循环神经网络,每个时间步由词向量构成批数据。batched函数查找词向量,所有序列长度补齐。训练模型,定义超参数、加载数据集和词向量、经过预处理训练批数据运行模型。模型成功训练,取决网络结构、超参数、词向量质量。可从skip-gram模型word2vec项目(https://code.google.com/archive/p/word2vec/ )、斯坦福NLP研究组Glove模型(https://nlp.stanford.edu/projects/glove ),加载预训练词向量。
Kaggle 开放学习竞赛(https://kaggle.com/c/word2vec-nlp-tutorial ),IMDB影评数据,与他人比较预测结果。
import tarfile import re from helpers import download class ImdbMovieReviews: DEFAULT_URL = ‘http://ai.stanford.edu/~amaas/data/sentiment/aclImdb_v1.tar.gz‘ TOKEN_REGEX = re.compile(r‘[A-Za-z]+|[!?.:,()]‘) def __init__(self, cache_dir, url=None): self._cache_dir = cache_dir self._url = url or type(self).DEFAULT_URL def __iter__(self): filepath = download(self._url, self._cache_dir) with tarfile.open(filepath) as archive: for filename in archive.getnames(): if filename.startswith(‘aclImdb/train/pos/‘): yield self._read(archive, filename), True elif filename.startswith(‘aclImdb/train/neg/‘): yield self._read(archive, filename), False def _read(self, archive, filename): with archive.extractfile(filename) as file_: data = file_.read().decode(‘utf-8‘) data = type(self).TOKEN_REGEX.findall(data) data = [x.lower() for x in data] return data import bz2 import numpy as np class Embedding: def __init__(self, vocabulary_path, embedding_path, length): self._embedding = np.load(embedding_path) with bz2.open(vocabulary_path, ‘rt‘) as file_: self._vocabulary = {k.strip(): i for i, k in enumerate(file_)} self._length = length def __call__(self, sequence): data = np.zeros((self._length, self._embedding.shape[1])) indices = [self._vocabulary.get(x, 0) for x in sequence] embedded = self._embedding[indices] data[:len(sequence)] = embedded return data @property def dimensions(self): return self._embedding.shape[1] import tensorflow as tf from helpers import lazy_property class SequenceClassificationModel: def __init__(self, data, target, params): self.data = data self.target = target self.params = params self.prediction self.cost self.error self.optimize @lazy_property def length(self): used = tf.sign(tf.reduce_max(tf.abs(self.data), reduction_indices=2)) length = tf.reduce_sum(used, reduction_indices=1) length = tf.cast(length, tf.int32) return length @lazy_property def prediction(self): # Recurrent network. output, _ = tf.nn.dynamic_rnn( self.params.rnn_cell(self.params.rnn_hidden), self.data, dtype=tf.float32, sequence_length=self.length, ) last = self._last_relevant(output, self.length) # Softmax layer. num_classes = int(self.target.get_shape()[1]) weight = tf.Variable(tf.truncated_normal( [self.params.rnn_hidden, num_classes], stddev=0.01)) bias = tf.Variable(tf.constant(0.1, shape=[num_classes])) prediction = tf.nn.softmax(tf.matmul(last, weight) + bias) return prediction @lazy_property def cost(self): cross_entropy = -tf.reduce_sum(self.target * tf.log(self.prediction)) return cross_entropy @lazy_property def error(self): mistakes = tf.not_equal( tf.argmax(self.target, 1), tf.argmax(self.prediction, 1)) return tf.reduce_mean(tf.cast(mistakes, tf.float32)) @lazy_property def optimize(self): gradient = self.params.optimizer.compute_gradients(self.cost) try: limit = self.params.gradient_clipping gradient = [ (tf.clip_by_value(g, -limit, limit), v) if g is not None else (None, v) for g, v in gradient] except AttributeError: print(‘No gradient clipping parameter specified.‘) optimize = self.params.optimizer.apply_gradients(gradient) return optimize @staticmethod def _last_relevant(output, length): batch_size = tf.shape(output)[0] max_length = int(output.get_shape()[1]) output_size = int(output.get_shape()[2]) index = tf.range(0, batch_size) * max_length + (length - 1) flat = tf.reshape(output, [-1, output_size]) relevant = tf.gather(flat, index) return relevant import tensorflow as tf from helpers import AttrDict from Embedding import Embedding from ImdbMovieReviews import ImdbMovieReviews from preprocess_batched import preprocess_batched from SequenceClassificationModel import SequenceClassificationModel IMDB_DOWNLOAD_DIR = ‘./imdb‘ WIKI_VOCAB_DIR = ‘../01_wikipedia/wikipedia‘ WIKI_EMBED_DIR = ‘../01_wikipedia/wikipedia‘ params = AttrDict( rnn_cell=tf.contrib.rnn.GRUCell, rnn_hidden=300, optimizer=tf.train.RMSPropOptimizer(0.002), batch_size=20, ) reviews = ImdbMovieReviews(IMDB_DOWNLOAD_DIR) length = max(len(x[0]) for x in reviews) embedding = Embedding( WIKI_VOCAB_DIR + ‘/vocabulary.bz2‘, WIKI_EMBED_DIR + ‘/embeddings.npy‘, length) batches = preprocess_batched(reviews, length, embedding, params.batch_size) data = tf.placeholder(tf.float32, [None, length, embedding.dimensions]) target = tf.placeholder(tf.float32, [None, 2]) model = SequenceClassificationModel(data, target, params) sess = tf.Session() sess.run(tf.initialize_all_variables()) for index, batch in enumerate(batches): feed = {data: batch[0], target: batch[1]} error, _ = sess.run([model.error, model.optimize], feed) print(‘{}: {:3.1f}%‘.format(index + 1, 100 * error))
参考资料:
《面向机器智能的TensorFlow实践》
欢迎加我微信交流:qingxingfengzi
我的微信公众号:qingxingfengzigz
我老婆张幸清的微信公众号:qingqingfeifangz
原文:http://www.cnblogs.com/libinggen/p/6939577.html