首页 > 其他 > 详细

CUDA5.5入门1. host和gpu之间的通信

时间:2014-06-10 00:36:48      阅读:541      评论:0      收藏:0      [点我收藏+]

《cuda programming 》  Shane Cook   第5章 第一节

cpu和gpu有各自独立的内存空间,两者不可以直接访问。

每个线程的执行代码是一样的,数据不同。

Thread---->Warp------>Block------>Grid

入门代码是并行加法:  1.cpu端的数组

                              2.开辟gpu的buffer : cudaMalloc((void**)&dev_a,arraySize*sizeof(int));

                              3.把host数据传入buffer  :    cudaMemcpy(dev_a,a,arraySize*sizeof(int),cudaMemcpyHostToDevice);

                             4.在Kernel中每个Thread进行相应的计算:  addKernelArray<<<1,arraySize>>>(dev_c,dev_b,dev_a);

                             5.把devcudaMemcpy(c,dev_c,arraySize*sizeof(int),cudaMemcpyDeviceToHost);

 

 

 结果:

 bubuko.com,布布扣

2 3 4 5 6
ThreadID:0 Block:0 warp:0 eachBT:0 wrapSize32
ThreadID:1 Block:0 warp:0 eachBT:1 wrapSize32
ThreadID:2 Block:0 warp:0 eachBT:2 wrapSize32
ThreadID:3 Block:0 warp:0 eachBT:3 wrapSize32
ThreadID:4 Block:0 warp:0 eachBT:4 wrapSize32
ThreadID:5 Block:0 warp:0 eachBT:5 wrapSize32
ThreadID:6 Block:0 warp:0 eachBT:6 wrapSize32
ThreadID:7 Block:0 warp:0 eachBT:7 wrapSize32
ThreadID:8 Block:0 warp:0 eachBT:8 wrapSize32
ThreadID:9 Block:0 warp:0 eachBT:9 wrapSize32
ThreadID:10 Block:0 warp:0 eachBT:10 wrapSize32
ThreadID:11 Block:0 warp:0 eachBT:11 wrapSize32
ThreadID:12 Block:0 warp:0 eachBT:12 wrapSize32
ThreadID:13 Block:0 warp:0 eachBT:13 wrapSize32
ThreadID:14 Block:0 warp:0 eachBT:14 wrapSize32
ThreadID:15 Block:0 warp:0 eachBT:15 wrapSize32
ThreadID:16 Block:0 warp:0 eachBT:16 wrapSize32
ThreadID:17 Block:0 warp:0 eachBT:17 wrapSize32
ThreadID:18 Block:0 warp:0 eachBT:18 wrapSize32
ThreadID:19 Block:0 warp:0 eachBT:19 wrapSize32
ThreadID:20 Block:0 warp:0 eachBT:20 wrapSize32
ThreadID:21 Block:0 warp:0 eachBT:21 wrapSize32
ThreadID:22 Block:0 warp:0 eachBT:22 wrapSize32
ThreadID:23 Block:0 warp:0 eachBT:23 wrapSize32
ThreadID:24 Block:0 warp:0 eachBT:24 wrapSize32
ThreadID:25 Block:0 warp:0 eachBT:25 wrapSize32
ThreadID:26 Block:0 warp:0 eachBT:26 wrapSize32
ThreadID:27 Block:0 warp:0 eachBT:27 wrapSize32
ThreadID:28 Block:0 warp:0 eachBT:28 wrapSize32
ThreadID:29 Block:0 warp:0 eachBT:29 wrapSize32
ThreadID:30 Block:0 warp:0 eachBT:30 wrapSize32
ThreadID:31 Block:0 warp:0 eachBT:31 wrapSize32
ThreadID:32 Block:0 warp:1 eachBT:32 wrapSize32
ThreadID:33 Block:0 warp:1 eachBT:33 wrapSize32
ThreadID:34 Block:0 warp:1 eachBT:34 wrapSize32
ThreadID:35 Block:0 warp:1 eachBT:35 wrapSize32
ThreadID:36 Block:0 warp:1 eachBT:36 wrapSize32
ThreadID:37 Block:0 warp:1 eachBT:37 wrapSize32
ThreadID:38 Block:0 warp:1 eachBT:38 wrapSize32
ThreadID:39 Block:0 warp:1 eachBT:39 wrapSize32
ThreadID:40 Block:0 warp:1 eachBT:40 wrapSize32
ThreadID:41 Block:0 warp:1 eachBT:41 wrapSize32........................................

................................................

疑问:现在还没想通:

当test_ThreadNums_BlockNums_WarpNums<<<2,64>>>里参数修改成《2,128》时,输出结果不理解。

 bubuko.com,布布扣

 

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
#include "cuda_runtime.h"
#include "device_launch_parameters.h"
#include <stdio.h>
#include<iostream>
using namespace std;
 
 
__global__ void addKernelArray(int*c,int* a,int*b)
{
    int i = threadIdx.x;
    c[i] = a[i]+b[i];
}
 
//calculate NO.
__global__ void test_ThreadNums_BlockNums_WarpNums(int* threadNum,int *blockNums,int *WarpNums,int *threadIndex,int *gpu_warpSize)
{
    int i = threadIdx.x + (blockIdx.x*blockDim.x);//thread ID
    threadNum[i] = threadIdx.x;//each block‘s thread NO.
    blockNums[i] = blockIdx.x;
    WarpNums[i]  = threadIdx.x/warpSize; 
    threadIndex[i] = i;//thread ID
    gpu_warpSize[i] = warpSize;
}
 
int main()
{
    //BEGIN calculate two arrays add
    const int arraySize = 5;
    int a[arraySize] = {1,2,3,4,5};
    int b[arraySize] = {1,1,1,1,1};
    int c[arraySize] = {0};
 
    int  *dev_a=0;
    int  *dev_b=0;
    int  *dev_c=0;
 
    //allocate gpu buffer
    cudaMalloc((void**)&dev_a,arraySize*sizeof(int));
    cudaMalloc((void**)&dev_b,arraySize*sizeof(int));
    cudaMalloc((void**)&dev_c,arraySize*sizeof(int));
 
    //copy host memory to gpu buffer
    cudaMemcpy(dev_a,a,arraySize*sizeof(int),cudaMemcpyHostToDevice);
    cudaMemcpy(dev_b,b,arraySize*sizeof(int),cudaMemcpyHostToDevice);
    cudaMemcpy(dev_c,c,arraySize*sizeof(int),cudaMemcpyHostToDevice);
 
    addKernelArray<<<1,arraySize>>>(dev_c,dev_b,dev_a);
 
    //copy gpu buffer to host memory
    cudaMemcpy(c,dev_c,arraySize*sizeof(int),cudaMemcpyDeviceToHost);
 
    for(int i=0;i<arraySize;i++)
    {
        std::cout<<c[i]<<" ";
    }
        std::cout<<std::endl;
    //END calculate two arrays add
 
    //BEGIN  capture thread,block,warp num
    const int cudaBlockNums =2;
    const int cudaAllThreadNums =128;
 
 
    int cpu_ThreadId[cudaAllThreadNums] = {0};
    int cpu_BlockNums[cudaAllThreadNums] = {0};
    int cpu_WarpNums[cudaAllThreadNums]={0};
    int cpu_eachBlockThreadNum[cudaAllThreadNums] = {0};
    int cpu_warpSize[cudaAllThreadNums] = {0};
 
    int *gpu_threadId=0;
    int *gpu_block=0;
    int *gpu_warp=0;
    int *gpu_eachBlockThreadNums=0;
    int *gpu_warpSize=0;
    //申请gpu buffer
    cudaMalloc((void**)&gpu_threadId,cudaAllThreadNums*sizeof(int));
    cudaMalloc((void**)&gpu_block,cudaAllThreadNums*sizeof(int));
    cudaMalloc((void**)&gpu_warp,cudaAllThreadNums*sizeof(int));
    cudaMalloc((void**)&gpu_eachBlockThreadNums,cudaAllThreadNums*sizeof(int));
    cudaMalloc((void**)&gpu_warpSize,cudaAllThreadNums*sizeof(int));
    //记录数据
    test_ThreadNums_BlockNums_WarpNums<<<2,64>>>(gpu_eachBlockThreadNums,gpu_block,gpu_warp,gpu_threadId,gpu_warpSize);
 
    //拷贝到cpu里
    cudaMemcpy(cpu_ThreadId,gpu_threadId,cudaAllThreadNums*sizeof(int),cudaMemcpyDeviceToHost);
    cudaMemcpy(cpu_BlockNums,gpu_block,cudaAllThreadNums*sizeof(int),cudaMemcpyDeviceToHost);
    cudaMemcpy(cpu_WarpNums,gpu_warp,cudaAllThreadNums*sizeof(int),cudaMemcpyDeviceToHost);
    cudaMemcpy(cpu_eachBlockThreadNum,gpu_eachBlockThreadNums,cudaAllThreadNums*sizeof(int),cudaMemcpyDeviceToHost);
    cudaMemcpy(cpu_warpSize,gpu_warpSize,cudaAllThreadNums*sizeof(int),cudaMemcpyDeviceToHost);
    for(int i=0;i<cudaAllThreadNums;i++)
    {
        std::cout<<"ThreadID:"<<cpu_ThreadId[i]<<" Block:"<<cpu_BlockNums[i]<<" warp:"<<cpu_WarpNums[i]<<" eachBT:"<<cpu_eachBlockThreadNum[i]<<"      wrapSize"<<cpu_warpSize[i]<<endl;
    }
 
    //END  capture thread,block,warp num
 
    return 0;
}

  

 

 

 

CUDA5.5入门1. host和gpu之间的通信,布布扣,bubuko.com

CUDA5.5入门1. host和gpu之间的通信

原文:http://www.cnblogs.com/dust-fly/p/3778839.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!