Given a binary tree, check whether it is a mirror of itself (ie, symmetric around its center).
For example, this binary tree [1,2,2,3,4,4,3]
is symmetric:
1 / 2 2 / \ / 3 4 4 3
But the following [1,2,2,null,3,null,3]
is not:
1 / 2 2 \ 3 3
Note:
Bonus points if you could solve it both recursively and iteratively.
/**
* Definition for a binary tree node.
* public class TreeNode {
* public int val;
* public TreeNode left;
* public TreeNode right;
* public TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public bool IsSymmetric(TreeNode root) {
if (root == null) return true;
Queue<TreeNode> queue = new Queue<TreeNode>();
queue.Enqueue(root);
while (queue.Count > 0) {
int count = queue.Count;
List<int?> nextLevel = new List<int?>();
for (int i = 0; i < count; i++) {
TreeNode curNode = queue.Dequeue();
if (curNode.left != null) {
queue.Enqueue(curNode.left);
nextLevel.Add(curNode.left.val);
} else {
nextLevel.Add(null);
}
if (curNode.right != null) {
queue.Enqueue(curNode.right);
nextLevel.Add(curNode.right.val);
} else {
nextLevel.Add(null);
}
}
if (!LevelIsSymmetric(nextLevel)){
return false;
}
}
return true;
}
public bool LevelIsSymmetric(List<int?> list) {
int left = 0;
int right = list.Count - 1;
while (right > left) {
if (list[left++] != list[right--]) {
return false;
}
}
return true;
}
}
原文:http://www.cnblogs.com/xiejunzhao/p/74acf933880d0f5f01455f39d66e9a15.html