首页 > 其他 > 详细

n个整数中1出现的次数

时间:2017-07-03 11:48:11      阅读:311      评论:0      收藏:0      [点我收藏+]

整数中1出现的次数(从1到n整数中1出现的次数) (两种方法:1、规律。2暴力求解)

题目描述

求出1 ~ 13的整数中1出现的次数,并算出100 ~ 1300的整数中1出现的次数?为此他特别数了一下1 ~ 13中包含1的数字有1、10、11、12、13因此共出现6次,但是对于后面问题他就没辙了。ACMer希望你们帮帮他,并把问题更加普遍化,可以很快的求出任意非负整数区间中1出现的次数。

规律( 1 的数目)

如果第 i 位(自右向左,从1开始标号)上的数字是0,则第 i 位可能出现 1 的次数由更高位决定(若没有高位,则视高位为0),等于更高位数乘以当前位数的权重(10i-1)

如果第 i 位上的数字为 1,则第 i 位上出现 1 的次数不仅受更高位影响,还受低位影响(若没有低位,视低位为0),等于更高位数乘以当前位数的权重 (10i-1) + (低位数 + 1)

如果第 i 位上的数字大于 1,则第 i 位上可能出现 1 的次数仅由更高位决定(若没有高位,视高位为0),等于(更高位数 + 1)乘以当前位数的权重 (10i-1)

规律(x 的数目)

这里的 x 属于[1, 9], 因为 x = 0 不符合下列规律,需要单独计算

首先要知道以下规律

  • 从 1 至 10,在它们的个位数中,任意的 x 都出现了 1 次
  • 从 1 至 100,在它们的十位数中,任意的 x 都出现了 10 次
  • 从1至1000,在它们的百位数中,任意的x都出现了100次
  • 依次类推,从 1 至 10i,在它们的左数第二位(右数第 i 位),任意的 x 都出现了 (10i-1)次。这个规律很容易验证,这里不再多做说明

接下以 n = 2593, x = 5 为例来解释如何得到数学公式。从 1 至 2593中,数字 5 总计出现了 813 次,其中有 259次出现在个位,260次出现在十位,294次出现在百位,0次出现在千位

  • 现在依次分析这些数据,首先是个位。从 1 至 2590 中,包含了 259 个 10,因此任意的 x 都出现了 259 次。最后剩余的三个数 2531,2592,2593,因为它们最大的个位数字 3 < x。因此不会包含任何 5. (也可以这么看, 3 < x, 则个位上可能出现的 x 的位数由更高位决定,等于更高位数字 (259) * 101-1 = 259)。

  • 然后是十位。从 1 至 2500中,包含了25个100,因此任意的 x 都出现了 25 * 10 = 250 次。剩下的数字从 2501 至 2593,它们最大的十位数是 9 > x,因此会包含全部 10 个 5。最后总计 250 + 10 = 260。(也可以这么看,9 > x,则十位上可能出现的 x 的位数由更高位决定,等于更高位数字(25 + 1) * 102-1 = 260)

  • 接下来是百位。从1至2000中,包含了2个1000,因此任意x都出现了2 * 100 = 200次。剩下的数字从2001至2593,它们最大的百位数字5 == x,这时候情况就略微复杂,它们的百位肯定是包含5的,但是不会包含全部100个。如果把百位是5的列出来,是从2500至2593,数字的个数与十位和个位数字有关,是93 + 1 = 94。最后总计 200 + 94 = 294。(也可以这么看, 5 == x,则百位上可能出现的x次数不仅受跟高位影响,还受低位影响,等于更高位数字 2 * 103-1 + (93 + 1))

  • 最后是千位,现在已经没有更高位,因此直接看最大的千位数字 2 < x,因此不会包含任何 5 。(也可以这么看,2 < x,则千位上可能出现的x的次数仅由更高位决定,等于更高位数字 0 * 104-1 = 0)

到此为止,已经计算出全部数字 5 的出现次数。

总结

总结一下以上的算法,可以看到,当计算右数第 i 位包含的 x 的个数时:

  • 取第 i位左边(高位)的数字,乘以 10i-1,得到基础值 a

  • 取第 i 位数字,计算修正值

  • 如果大于 x , 则结果为 a + 10i-1

  • 如果小于 x,则结果为 a

  • 如果等于 x,则取第 i 位右边(低位)数字,设为 b,最后结果为 a + b + 1

代码

#include <iostream>

using namespace std;
int oneNum(int n)
{
    int cur=n%10;//当前位
    int high=n/10;//相对于当前位的高位部分
    int low=0;//低位部分
    int count=0;//计数
    int base=1;//
    while(n/base)
    {
        if(cur==0)//题目中要求找1 故小于1的只有0
        {
            count+=high*base;//高位部分乘以基(见上文的算法总结和规律)
        }
        else if(cur==1)
        {
            count+=high*base+low+1;
        }
        else{
            count+=(high+1)*base;
        }
        base*=10;
        cur=high%10;
        high=n/(base*10);
        low=n%base;
    }
    return count;
}
int main()
{
    int n;
    while(cin>>n)
    {
        cout<<oneNum(n)<<endl;
    }
    return 0;
}

 

由分析思路或者代码都可以看出,while循环的次数就是n的位数,logn(以10为底),而循环体内执行的操作都是有限次的,所以时间复杂度为O(logn)

暴力求解:

方法:对1到n中的每一个数,分别判断其中1的个数。

复杂度:O(n*logn)

int oneNum_b(int n)
{
    assert(n>=0);
    int count=0;
    int curNum=1;
    for(int i=1;i<=n;i++)
    {
        curNum=i;
        while(curNum)
        {
            if(curNum%10==1)
                count++;
            curNum/=10;
        }
    }
    return count;
}

 

n个整数中1出现的次数

原文:http://www.cnblogs.com/wft1990/p/7109695.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!