题目链接:
http://acm.hdu.edu.cn/showproblem.php?
pid=1573
题目大意:
求在小于等于N的正整数中有多少个X满足:X mod a[0] = b[0], X mod a[1] = b[1], X mod a[2] = b[2],
…, X mod a[i] = b[i], … (0 < a[i] <= 10)。
思路:
先求出数组b[]中全部数的最小公倍数lcm,再求解出该一元线性同余方程组在lcm范围内的解为a。题目要
求解x是小于等于N的正整数,则可列不等式:a + lcm * x <= N。
那么,假设a = 0,则答案为x-1。假设
a != 0,则答案为x。
AC代码:
#include<iostream> #include<algorithm> #include<cstdio> #include<cstring> using namespace std; __int64 GCD(__int64 a,__int64 b) { if(b == 0) return a; else return GCD(b,a%b); } void ExGCD(__int64 a,__int64 b,__int64 &d,__int64 &x,__int64 &y) { if( !b ) { x = 1; y = 0; d = a; } else { ExGCD(b,a%b,d,y,x); y -= x * (a/b); } } __int64 A[15],B[15]; int main() { int T,N,M; __int64 a,b,c,d,x0,y0,lcm; cin >> T; while(T--) { cin >> N >> M; bool flag = 1; lcm = 1; for(int i = 1; i <= M; ++i) { cin >> A[i]; lcm = lcm / GCD(lcm,A[i]) * A[i]; } for(int i = 1; i <= M; ++i) cin >> B[i]; for(int i = 2; i <= M; ++i) { a = A[1]; b = A[i]; c = B[i] - B[1]; ExGCD(a,b,d,x0,y0); if(c % d != 0) { flag = 0; break; } __int64 temp = b / d; x0 = (x0*(c/d)%temp + temp) % temp; B[1] = A[1] * x0 + B[1]; A[1] = A[1] * (A[i]/d); } if( !flag ) { cout << "0" << endl; continue; } __int64 Ans = 0; if(B[1] <= N) Ans = 1 + (N - B[1])/lcm; if(Ans && B[1] == 0) Ans--; cout << Ans << endl; } return 0; }
原文:http://www.cnblogs.com/yangykaifa/p/7110550.html