首页 > 其他 > 详细

多项式回归(Polynomial Regression)

时间:2017-07-14 19:18:06      阅读:513      评论:0      收藏:0      [点我收藏+]

在拿到一组数据时,我们需要先观察数据选择特征甚至构造特征,然后选择合适的模型。

线性回归并不适用所有数据,有时候我们需要用曲线来拟合我们的数据。

比如一个二次模型:  技术分享

  或者三次模型:技术分享

  技术分享

  对于多项式模型,我们可以构造特征如:

  x2 = x22

  x3 = x33

  从而可以把模型转化为线性回归模型。

 

注:在构造特征(模型选择)时,应充分观察数据分布以及大致的函数图形特征。比如上面的数据我们可以有以下两种选择:

技术分享

另外,对于多项式回归模型,构造完特征之后一般各特征的尺度都不一样甚至都相差很大,所以特征缩放很有必要。

 

多项式回归(Polynomial Regression)

原文:http://www.cnblogs.com/J-K-Guo/p/7171921.html

(0)
(0)
   
举报
评论 一句话评论(0
关于我们 - 联系我们 - 留言反馈 - 联系我们:wmxa8@hotmail.com
© 2014 bubuko.com 版权所有
打开技术之扣,分享程序人生!